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ABSTRACT. In this paper, a two-step inertial Tseng extragradient method involving self-adaptive and
Armijo-like step sizes is introduced for solving variational inequalities with a quasimonotone and Lip-
schitz cost function in the setting of a real Hilbert space. Weak convergence of the sequence generated
by the proposed algorithm is proved. An interesting feature of the proposed algorithm is its ability to se-
lect the better step size between the self-adaptive and Armijo-like options at each iteration step. Finally,
the algorithm accelerates and complements several existing iterative algorithms for solving variational
inequalities in Hilbert spaces.
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1. INTRODUCTION

Let H be a real Hilbert space with the inner product(-, -) and the induce norm)|| - ||. Then we suppose
that C' is nonempty, closed and convex subset of H (C' C H). In this work, we focus on the following
problem:

Find z* € C' such that (Az*, x —2*) > 0, Va € C. (1.1)

Problem (1.1) is popularly known as the variational inequality problem (VIP) (VI(C, A), for short). Let
(2 denote the set of solutions of VI(A, C) (1.1). Thatis, 2 := {qg € C : (A(q),z —q > 0)}. The VIP has
been used as a modeling tool for the study of various real-life problems such as the obstacle problem,
contact problem, traffic network problem, and optimal control problem, and have also been applied in
diverse areas of study such as optimization theory, nonlinear analysis, and computational mechanics.
Those applications of VI(A, C) (1.1) mentioned about are discussed in [8, 9, 15, 17, 30].

Numerous iterative algorithms for solving VI(A, C') (1.1) have been extensively studied and devel-
oped by many authors (see, for example [2, 6, 18, 37] and the references therein). The fundamental idea
involves extending the projected gradient method, originally designed to solve a constrained minimiza-
tion problem involving f over some nonempty closed and convex set say, C. The iterative procedure is

given by:
Tl € IRn7 (1 2)
Trp1 = Po (o, — oV f(21)) ,
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where P is the metric projection onto C, oy, is a positive real sequence that satisfies some certain
conditions and V f is the gradient of the smooth function f [36]. One of the early generalizations of
the projected gradient method to the setting of VIP was the method proposed by Goldstein [31]:

{ml € R (1.3)

Th+1 = Pc(xk — )\Axk),

where ) is a positive real number, P is the projection operator and A is a given mapping. But the
convergence of this method is only guaranteed under a highly restrictive condition that the operators
are strongly monotone or inverse strongly monotone (see for [35]).

Korpelevich [16] improved Goldstein’s method by extending the operator A to monotone and L-
Lipschitz continuous mapping. He then introduced the famous extragradient method (EGM) given by:

xr1 € ]Rn,
yr = Po(z, — AMxy), (1.4)
zp41 = Po(xp — AMuyy),

where A € (0,1/L).

Remark 1.1. Tt is well-known that one of the drawbacks of the EGM arises from its requirement to
perform two projections onto the closed convex set during each iteration. This requirement can be
computationally expensive especially when the structure of C' is not simple. Another drawback of this
method is the fact that parameter A depends on the explicit value of the Lipschitz constant L which is
can be challenging to obtain.

Many authors have tried to address Remark 1.1 in different directions (see [5, 7, 10, 12, 22, 28, 29, 38]).
Censor [4] introduced a new method called the subgradient extragradient method (SEGM) which is
defined as follows:

1 EH,

Yk :PC (:L‘k—)\A:L'k),

Tn = {w € H| (x), — My — yp,w — yi) < 0},
Tp1 = P (zr — Myg), k> 1,

Another modification of the EGM was the method introduced by Tseng [34]. His idea was to replace
the second projection onto C' by a function evaluation. His algorithm is the following:

T € H,
yr = Po (:L'k — )\Axk) , (1.5)
Tr+1 = Yk — A (Ayr — Azy)

where A € (0,1/L). Tseng [34] proved that the sequence generated by [34] converges weakly to a
point in ). The advantage of the above Tseng’s method is that it requires only one computation of
projection onto the feasible set C' and two evaluations of A per iteration.

It is worthy of mention that the sequences generated by all the algorithms above may have slow con-
vergence properties. To accelerate the convergence, several authors have adopted the inertial accelera-
tion technique which dates back to the early work of Polyak [25] in the setting of convex minimization.
Alvarez and Attouch [1] adopted this principle and extended it to general maximal monotone operators
through a proximal point framework. They proposed a new algorithm called inertial proximal point
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algorithm which is defined as:
xo,x1 € H,
Yo = ok + (@ — Tp—1), (1.6)
w1 = (I + A A) "y,

where (I + A\ A)~! is the resolvent of the maximal monotone operator A and )y is a positive sequence

that satisfies some appropriate conditions. Then, the authors proved that the sequence z, generated by
(1.6) converges weakly to a zero of A provided av, € [0, 1) satisfies the following condition:

oo
> agllak — zp1 ] < +oo. (1.7)
k=1

In the setting of VIP, Thong and Hieu [33] introduced an inertial step in the Tseng’s method for a
better performance in a real Hilbert space. Their algorithm is defined as:
xo,x1 € H,
wi = Tk, + a(Tk + Tpt1),
yr = Po(wy — Apwy),
Tkt = Yo — Me(Ayp — Awg),

(1.8)

where A is monotone and Lipschitz continuous and )y, is a step-size obtained using Armijo-like step
size rule.

Some results from using one-step inertial have shown that algorithms with this acceleration tech-
nique may fail to outperform their counterpart that does not involve this step. A counter example was
given in [27] which which one-step inertial extrapolation fails to provide acceleration. Polyak men-
tioned in [26] that the use of inertial of more than two points xj, x;_1 could provide acceleration.
Polyak [26] also discussed that the multi-step inertial methods can boost the speed of optimization
methods though neither the convergence nor the rate of such multi-step inertial methods was estab-
lished in [26]. Recently, several authors have explore the concept of two-step inertia to accelerate
convergence (see for example, [3, 13, 24]).

Remark 1.2. Tt is important to note that all the improvements of the EGM and their accelerated versions
mentioned above have not fully addressed Remark 1.1. They are yet to dispense with the dependency
of the step-size on the explicit value of the Lipschitz constant.

In recent years, different rules of selecting the step-size have been discussed since the arising of sto-
chastic approximation methods. Liu and Yang [20] introduced a new self-adaptive method for solving
variational inequalities with Lipschitz continuous and quasimonotone mapping (or Lipschitz continu-
ous mapping without monotonicity) in real Hilbert space.The method is defined as:

r1 € H,
Yk = Po (w — AeAxy)
Aest = { min {%, /\k} , ifAxp — Ay, # 0,
ks otherwise,
Thr1 = Yo — M (Aye — Azg) -
They introduced the adaptive step-size to modify the gradient method and get the weak convergence
without knowing the Lipschitz constant. And another popular step-size is Armijo like step-size, which

is a fundamental step size selection technique in optimization algorithms. It ensures sufficient decrease
in the objective function while balancing computational efficiency.
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Recently Mewomo et al. [23] used the two-step inertial acceleration strategy and the adaptive step-
size to introduce a two-step inertial Tseng method involving quasimonotone and uniformly continuous
operator. Their algorithm is given by:

Algorithm: 1

Initialization: Giveny > 0,1 € (0,1),u € (0,1). Let x_1, z, 21 € H be arbitrary points and given
L—2,T—1, Tk

Iterative: Calculate = as follows

Step 1: Set wy, = vy + o(zy — zk—1) + B(zk—1 — Tx—2) and compute

yr = Po (wy, — \pAwy) ,

where )\](f) = U™ and my, is the smallest nonnegative integer m such that

Ak | Awy, — Ayg|l < pllwe — yill - (1.9)
If yi, = wy, then stop: yy, is a solution of the problem (VIP). Otherwise,
Step 2: Compute
Tt = Yo — Ae(Ay — wg).-
Set k :=k + 1 and go to Step 1.

They proved weak convergence of the sequence generated by their proposed algorithm.

From different angle, Peng et al. [14] used the Armijo-like condition to proposed a modified Tseng
method for solving pseudo-monotone variational inequality problems and the fixed point problems of
the demi-contractive mappings. Their algorithm is defined as:

Algorithm: 2

Initialization: Givenk = 1,p > 0,\p > 0,7 > 0,1 € (0,1), . € (0,1). Let zp,x1 € H
be arbitrary points
Step 1: Given the current iterate z;_1, xj

wi =z + o () — Tp—1),

. & .
ay = { min { ||$k_xk—1||7p} , ifxy 7é Tk—1,

0, otherwise

where

Step 2: Compute
yr = Po (w — A\ Awy),

where A\, = min()\,(:), )\,(62))

N {min{M,Ak_l}, if A (w) — A (ye) # 0, (1.10)
Ak_1, otherwise .
where A,(f) = ~I™* and my, is the smallest nonnegative integer m such that
e [[Awy, — Ayl < pljwr — yil| - (1.11)
ax = (1= Br)zk+ BeUz, (1.12)

where 2 = yr + \p(Awyg — Ayyg).
If wi, = yr = g, then stop wy, is a solution of wy, € VI(C, A) N Fiz(U). Otherwise
Step 3: Compute

Tpy1 = M Dr + (1 — 0k qre
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where Dy, = (1 — 0k) f(xg) + 0 f(xk—1), Set k := k + 1 and go to Step 1.

In the step2 of Algorithm 2, Peng et al choose the step-size as the minimum of the adaptive step-size
and the Armijo rule step size. In this paper, inspired by the work of [14] and [23], we have the following
contributions:

e We propose a novel algorithm that incorporates a two-step inertial technique to accelerate con-
vergence. Unlike traditional one-step inertial methods, our approach leverages historical infor-
mation from two preceding iterations, enhancing the algorithm’s momentum and convergence
speed.

e Our work extends the applicability of Tseng’s extragradient method to quasimonotone VIPs, a
broader and more general class of problems compared to the monotone or strongly monotone
cases typically studied. This extension is significant because quasimonotonicity covers a wider
range of practical problems while requiring weaker assumptions for convergence.

2. PRELIMINARIES

In this section, we review the definitions and lemmas required for this article.

Definition 2.1. Let H be a real Hilbert space. An operator A : H — H is said to be:
(i) Lipschitz continuous on H, if there exist a constant L > 0 such that

|Az — Ay|| < Ll|z — yl|, Y2,y € H.

(ii) uniformly continuous, if for every € > 0, there exists 6 = d(€) > 0, such that

||Az — Ay|| < €, whenever ||z — y|| <, Va,y € H;

(iii) sequentially weakly-strongly continuous, if for each sequence xj, we have x;, — = € H implies
that Az, — Ax € H;
(iv) sequentially weakly continuous, if for each sequence z,, we have z,, — = € H implies that
Az, — Ax € H;
(v) monotone, if (Ax — Ay, x —y) > 0,Vz,y € H;
(vi) a-strongly pseudomonotone, if there exists o > 0 such that
(Az,y —2) > 0= (Ay,y —z) > afle —y||?, Yo,y € H;

(vii) pseudomonotone, if

(Az,y —x) > 0= (Ay,y —x) > 0, Va,y € H;
(viii) quasimonotone, if

(Az,y —z) > 0= (Ay,y —x) > 0, Va,y € H;

From the definition above, the following implications hold: (v) = (vii) == (viii) but the converse

is not true in general. We also note that uniform continuity is a weaker notion than Lipschitz continuity.

Furthermore, it is well known that if D is a convex subset of H, then A : D — H is uniformly
continuous if and only if, for every € > 0, there exists a constant K < 400 such that

Az — Ay[| < K|l —yl[ + ¢ Vo,y € D.
Let Sp be the solution set of the dual formulation of the VIP (1.1) defined as: find * € C such that

(Az, z—x*) >0, Vz € C.
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Then, Sp is a closed and convex subset of C, and since A is continuous and C' is convex, we have
that Sp C S. We have the following result on the solution set of the dual VIP .

Lemma 2.2. Letz,y,z € H and a,b € R. Then
(1 +a)z — (a—b)y — bz =(1 + a)||z[|* = (a = )|[y|[* — bl|=|]?
+ (1 +a)(a=b)llz —yl|
+b(1+a)llz —2|* = bla —b)|ly — 2|

Lemma 2.3. Let C' be a nonempty closed subset of a real Hilbert space H. Vv € H and Vz € C, we
have

z=Pove (v—2z,2—y) > 0,Vy € C.
Lemma 2.4. The following identities hold for all u,v € H :
2(u,v) = Jul® + [[v]]* = lJu = v)|* = [lu+ 0] = [lul® — [|v]>

Lemma 2.5. ([19]) Suppose either

(a) A is pseudomonotone on C' and S = (;

(b) A is the gradient of GG, where G is a differential quasiconvex function on an open set X' D C and
attains its global minimum on C;

(c) A is quasimonotone on C, A # 0 on C' and C' is bounded,;

(d) A is quasimonotone on C, A = 0 on C and there exists a positive number 7 such that, for every
x € C with ||z|| > r, there exists y € C such that ||y|| < rand (Az,y — x);

(e) A is quasimonotone on C, intC' = () and there exists z* € S such that Az* # 0,

then Sp is nonempty.

Lemma 2.6. ([11]) Let H be a Hilbert space and A : H — H be a uniformly continuous operator.
Suppose x € H and ¢ > ¢ > 0. The following inequality holds:
[z — Pe(z —pAz)|| _ |lz — Po(z — o Az)]|
(4 - o '

3. PROPOSE THE ALGORITHM

The subsequent section outlines the presentation of the algorithm. To ensure the weak convergence
properties of the algorithm are valid, we propose the following assumptions.
Assumption 1.
(i) Sp # 0;
(ii) A is uniformly continuous on H;
(iii) A satisfies the following condition: whenever z;, C C and xj, — v*, one has [|Av*|| < lim n1££0 | Az
(
(

iv) A is quasimonotone on H;
v) The set {v € C' : Av = 0}\Sp is a finite set.

Assumption 2. Assume that « and [ meet the following conditions:
()0 < o < £,

-~ ﬂ:
(b) maz{2a(34) — (1 — a), Lo + p) — (2=} < g < 0;

(c) 2a%u — (1 — 3a) + p(l — a) — B(da + 3 — p) + 2uB? < 0.

Under the assumptions above, we propose an algorithm for solving VIP (1.1):
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Algorithm: 3

Initialization: Giveny > 0,1 € (0,1), € (0,1). Let z_1, z, 21 € H be arbitrary points and given
Th—2,Tk—1, Tk

Iterative: Calculate xj as follows

Step 1: Set wy, = x + oz — x—1) + B(xp_1 — Tx—2) and compute

yr = Po (wy, — A Awy,),

where A, = min(A]gl), )\,(f))

o b sllwe—yrlD - _
)\;1) _jmmn { |\Awk—A(yk|I’/\’“*1}’ if Awy — Ay 70, (3.1)
Ak_1, otherwise .
)\,(3) = yI™F and my, is the smallest nonnegative integer m such that
2
N ([ Awy = Ayl < plleor = uil - (32)
If yi, = wy, then stop: yy, is a solution of the problem (VIP). Otherwise,
Step 2: Compute
Tp1 = Yk — Me(Ayp — Awg),
Set k :=k + 1 and go to Step 1.
4. CONVERGENCE ANALYSIS
Lemma 4.1. Under the Assumption (i)-(iv), the sequence Ay generated Algorithm 3 satisfying
.l
mln{f,)\g} <A < Ao (4.1)

Proof. Firstly, it is obvious that /\S) is a monotonically decreasing sequence. Since A is a Lipschitz
continuous mapping with constant L > 0, in the case of Awy, — Ay # 0, we have

pllwe —well o pllos —gill _ p

|Awg — Ayg|| = Lllwg — el L

0

which implies that 0 < min(%,)\g) < min(f7, Ag) < )\,(gl) < MXp. On the other hand, from the
definition of )\](3) we have

(2
A
B Ay — Ag]| 2 |k — o

combining this with A is Lipschitz continuous on H, we obtain

A

;L llwk = yill = pllwr = yll



SOLVING QUASIMONOTONE VARIATIONAL INEQUALITY PROBLEM 191

Proof. Let g € Sp. First of all, we estimate | |24 1 — g||%. It can be obtained from the definition of x|
that:

k1 — all® =llyr — M (Aye — Awg) — gl
=[lyr. — qlI* + Al Ayr — Awp||* — 20 (Ayg — Awg, g — q)
=lwk = ql|* + [Jwr, = yxl|* + 2(yr — wr, wr, — q) + Al| Ayg — Awy||?
— 20k (Ayr, — Awg, yr — q)
=l[wr, — ql|* + lJwr — yrl®> — 2(yr — wi, Yo — wi) + 2(yx — Wi, Yk — @)
+ Al Agr, — Awg| P = 20 (Ayx — Awg, g, — q)
=l[wr, — ql|* = lJwr = yrl® + 2(yr — wi, Yo — @) + AR || Ay — Awg|
— 2\, (Ay, — Awg, yi — q). (4.2)
From the definition of yj, and the fact that Sp C C, it can be obtained by Lemma 2.3 that:
(W — MeAwg, — Yk, ye — @) > 0,
that is
(Yo — Wi, vk — @) < =M (Awg, Y — q). (4.3)
Appling (4.3) to (4.2), we will have
l|zkr1 — all* <|lwe — ql® = [Jwr — yell* — 22 (Awg, v — @)
+ Ml Aye — Awg || — 20 (Ayy, — Awg, i — q)
=l[wr, — ql|* = llw — yrll® + || Ayx — Awg|

= 22 (Ayk, yr — q)- (4.4)
Since g € Sp, A > 0 and y € C, we have that
Me{AYk, yk — q) > 0. (4.5)
Therefore, from (4.4) we can have
k1 — al® < fJwr = gll* = [fwr = il ? + A3 Ays — Aw| . (4.6)

From the definition of A, if Aw, — Ay # 0, then we have

AL — in M’/\ B
b=~ g

which means:
A < Alle = ol
|[Awy, — Ayg||

Ml Awy — Ayl < pllewor = gl -
Also, we have )\,(f) |Awy, — Ayk|| < p|jwg — yg||- Therefore,
Ak [[Awy = Ayl < pllwr — |- (4.7)
Substituting (4.7) into (4.6), we have
k1 = gll? <|lwr = gl|* = [Jwr = yul1* + 1| [wr, =yl
=lwy = al* = (1 = p®)lJwr, — yel[*. (4.8)
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Observe that

kst — k|| =llye — Me(Ayr — Awy) — |
=Xi||Ayr — Awy||

<pl|wr, — yill,

and

[|[Zrr1 — well <[|zrs1 — yel| + [lwr — yrl|
<pllwr, =yl + [lwe — yl|

=1+ p)llwr = yill (4.9)
Hence, using (4.9) into (4.8), we obtain that
2 1 2
—[|wk — |l S—mekﬂ—wkH : (4.10)
Applying (4.10) into (4.8), we have
|21 = gll* < [Jwy —qll* — (:Z)ka—l-l — wyl[%. (4.11)

Also,

wy, — q =2 + a(rp — Tp-1) + B(Tr—1 — Tr—2) — ¢
=1+ a)(zx — q) — (@ = B)(xk-1 — q) — B(T—2 — q)-

Using Lemma 2.2, we get

llw — ql]* =I|(1 + @) (zx — q) — (@ = B)(xx—1 — @) — B(zr—2 — )|
=(1+ a)||lzr — qll* = (= B)|Jzxe—1 — ql|* = Bllzr—2 — gl
+ (1+ ) (= B)||zx — zp 1| + B+ ) |Jag — z) 2]
— Bla = B)||xk-1 — zp—2|*. (4.12)

Furthermore, it can be obtained that

zks1 — wil? =2 — 2 + alzr — ze-1) + Blzr—1 — zp—2)]|?

=|@pi1 — 2 — a(wp — zp—1) — B(ap—1 — p—2)|?
=[|Try1 — @“kHQ — 20(Tp41 — Tk, Tk — Tp—1) — 2B(Th1 — Thy Vo1 — Th—2)
+ o?||wp — 21 ])? 4 20B8(xk — Tp—1, Tho1 — Th—2) + B2 TRo1 — T_2||
> k1 — axl® = allzpgn — 2l = alloy — apa P + P lzy — 2
— |Blallzr — zp—1]* = [Blellzr—1 — zp—2l® + BZ|lzp—1 — Tr—2]|®
— 1Blll@rsr — zll® = |Bl|zr—1 — zp—2]?
=(1— 18] = @) [leg1 — wl® + (& — = |Bla) |z, — 2pa|?

+ (8% = 18] = |Ble) | zk—1 — wp2]*. (4.13)
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Applying (4.12) and (4.13) with (4.11) and note that 8 < 0 we have
leerr = all? <(1+ a)llzy, — all* = (@ = B)llzn—1 — gll* = Bllar—2 — ql|?
+ (14 a)(a = B)|ar — zpall” + B0 + a)llzg — z—a?

— Blo = Bllancs — zial? — () (U~ 18] — ) eis — il

1+u
_ (1;5) (0 — a — |Bla)|zs — zpa?
- (1 ;Z)(BQ — 18] = 1Bla)er—1 — wp—o]|?

<(L+a)|zk —ql* — (@ = B)llek—1 — ql* = Bllzr—2 — al* + |(1 + a)(a — B)

_ (1 V(02— at o) ok — a5 P

1T+p
[0 = 5) + (7 ) (8 4 B+ B freor = mial?
- <m>(1+ﬂ—a)”xk+1 — . (4.14)

By rearranging the inequality above we obtain that:

1—p
lopsr = al? = allz, — al* = Bller — al* + (

— J(1+ 58 —a)|x — z||?
) (U B = o)k — ]

<l = all* = allris gl = Bllon-a = all + (75 ) 1+ 8 = ) o = i
1+ a)a—9) - ((T2)@ = 20+ fa+ 6+ 1) ax — opc
~ o=+ (152 ) 6+ B+ Bl — aual? (419

Now, let

L—p
T = o = alP = alleis = alf = Blowa =l + (1) (14 8= o — aucal?

Then we can rewrite (4.15) as

i <Ot [(1+ oo = ) - (154 ) (@ = 20+ fat 5+ Dl - P

~ (60 =)+ (152 (3 + 5+ Ba)llns — aual? (419

Claim: I', > 0, Vk > 1. Since
1 —p
Ty =llzk — ql* — allzi—1 — ql|* — Bllax—2 — ql* + <1+u> (148 —a)|zgp — zp—1]?
>z — ql” = 2allz, — zp—1])* = 2allzg — ql|* = Bllwe—2 — ql)?

1—
+ <HZ> (]. + ,6 - OZ)HSCk — .Tk_1||2

(1 = 20) fax — gl + [(1;5) 1+8-a) —2a] lox — 21 |?

— Bllzr—a — q|%. (4.17)
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From Assumption 2, we have that a < %, b <0and0 < a <
Vk > 1. Let

l—p
ST Tt can be conclude that I'y, > 0,

== [+ a)a=8) - (174 ) (0 - 20+ pa+ 4+ 1)

== [+ a)(a=9) - (154 ) (@ =20+ fa+ 5 +1) = Ba— )

- (352) 2+ 6+ s

1+
(4.18)
Thus, we deduce from (4.16) that
U1 — Tk < ka([leg—1 — zp2]® = llog — zpal?) = kollzr—1 — 2xaf*. (4.19)
From Assumption 2(b),
1= p | (1= (1 = a)?
20(—) — (1= @), =[a(1 + ) — }< <0,
max {20(37) = (1= a), o1 +p) = (=) <6
which implies that
1 (1—p)(1—a)
— 1 — 4.20
j |1+ - EEUZ0R ) (420
which can conclude that k1 > 0.
By Assumption 2(c) we can have ka > 0, thus, (4.19) can be rewritten as
D1 + killog — 2o ||* < o+ kllze—1 — 2p—al® — kollzr—1 — 22| (4.21)

Letting T, = Ty, + k1|21 — 22| Then, T, > 0, Vk > 1. Therefore, we deduce from (4.21) that
[y < T (4.22)

which implies that the sequence F;c 41 1s decreasing and bounded from below and thus lim F;g exists.
n—oo

Hence, by rearranging (4.21) and letting k approach infinity, we have
lim ko||zp_1 — p_o|[* =0 = lim ||zp_1 — zx_o|| = 0. (4.23)
k—o00 k—o00

It is easy to see that

lZkr1 — will =lzrp1 — 26 — (og — 2p-1) — B(Tp—1 — Tp—2) |

<|zp1 — zil| + allzp — zp—1|| + Bllep—1 — Tp—2]|. (4.24)

Consequently, by (4.23) we have

lim ||zp11 — wg| = 0. (4.25)
k—oo
Furthermore,
|2k — wi|l =llzk — 2k — a2 — 2p—1) — B(@E—1 — Th—2) ]|

<allzk — zg-1l| + Bllzk—1 — Tk—2[ = 0,k — 0. (4.26)
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Observe that

o1 —will = [lyk — Ae(Aye — Awg) — wy]
> lyk — will — AellAyr — Awg||
> ke — will = pllyr — wil]
= (1= wllyx — wyl- (4.27)
Using (4.25 )we deduce from (4.27) that
klggo |we =yl = 0. (4.28)
Also,
ek — yill < [lox — wil| + [Jwy — yxll = 0,k — oo. (4.29)

Due to the existence of the limit F;C and (4.23), we can obtain that the limit of I';, also exists and therefore,
the sequence {I'y} is bounded.

Since klim ||zk+1 — zk|| = 0, from the definition of 'y, we can get that
—00
lim ([l — ql” = allzg-1 — gl = Bllae—2 — al?) (4.30)
k—o0
exists. Due to the boundedness of {I';}, we have from (4.17) that {z}} is bounded and {y; } and {wy}
are bounded. O

Lemma 4.3. Let {x}} be the sequence generated by Algorithm 3, satisfying Assumptions 1 (i)-(iv) and
Assumptions 2 (a)-(c), and assuming that klim (wi, —y) = 0. If v*is one of the weakly clustered points
— 00

of {yx}, then we have at least one of the following: v* € Sp or Av* = 0.

Proof. By Lemma 4.2 above, it can be concluded that {y;} is bounded. Therefore, let v* be a weak
cluster point of {yy }. Hence, we denote {yy, } as a subsequence of {y} such that 5, — v* € C. Now
we discuss in two cases.

Case 1. First, we assume that lim [[Ayy, || = 0. Consequently, lim [|Ayy,|| = liminf |[Ay || = 0.
Through the assumption above that y,, — v* € C' and A satisfies Assumption 1 (iii), that is
0 < [[Av*|| < lim inf || Ayy; || = 0. (4.31)
Jj—o00
Which just implies that Av* = 0.
Now we consider the another situation.
Case 2. If  limsup ||Ayy, || > 0. Without loss of generality, we take
J—00

follows that there exists a K € N such that || Ay, | > M for all j > K. Since Yk, = Pol(wy; —
Ak, Awg; ), we have

| Ay, || = My > 0. It then

lim
Jj—o0

(wi; — A, Awg; — Y, — Yr;) < 0.

1
Hence, X(wkj — Yk;> T — Yk;) + (Awp,, yr, — wi;) < (Awg;, T — wy, ). (4.32)

For the weak convergence of {wy; }, since {wy; } is bounded. Then, by the Lipschitz continuity of A,
{Awy, } is bounded. By (4.28) we can get that

J

[wr; = y; | = 0,5 —= oo.
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Therefore, {yy; } is also bounded and using Lemma 4.1 we get that A, > min{%, Ao}. Passing (4.32)
to the limit as j — oo, that is

lim inf (Awy,, r — wy,;) > 0,z € C. (4.33)

j—>OO

Observe that

(Ayk].,.’b - ykj> :<Ayk]’ - Awk]”x - wk]’> + <Awkj7$ - wk]‘>
Thus, we can get lim || Awy; —Ayy, || = 0, for the lim [|wy, —yx,|| = 0and the L -Lipschitz continuity
on H of A. Together with (4.33) and (4.34) which implies that

If we suppose that lim sup(Ayy,,, * — Y, ) > 0, then there exists a subsequence denoted by {yy; } such
j—)OO
that lim (Ayx, , = — yx; ) > 0, that is there exists ng € N such that
n—00 n n
(Ayr; T — yr,;) > 0,Yn > ng. (4.36)
By quasimonotonicity of A, we get (Az,x — yg, ) > 0,as n — oo, we conclude that v* € Sp. On the
other hand we suppose that if lim sup( Ay, yk].> = 0. Then, (4.33) implies that
j—)OO
lim (Ayy,, v — yg,;) = 0. (4.37)
j—o0

Let € := [(Ayx;, T — yx;)| + j% Thus, we obtain that

Furthermore, for each j > K we can get Ayy; # 0. Defining that
Ay

then (Aykj , 'rkj> = 1 for each j > K. Thus, we can conclude from (4.38) that,
(Ayp;, © + €jre; —yr;) > 0, j > K.
Since A is quasimonotone on H, we get
(A(w + €5y, ), T + €51y — Yiy) > 0. (4.39)
Thus,
(Az, o + €jri; — yr;) =(Az — A(T + €7k;), T + €57k, — Yk;)
+ (A(z + EjT‘kj), T+ €Ty, — ykj>>

Z<A.'E — A(CU + ejrkj)wr + Ej'rkj - yk]>
> — || Az — Az + i) ||z + err, — u, |
> — L e + e, — v |
1
= ;L |z + € — Y.
S Ay 1+ 97~ |
2
. GJLMHCC + €j7k; — Uiy |- (4.40)

Observe that, tending j — oo, for {z + €Tk, — ykj} is bounded and klim €; = 0, we can conclude that
—00

(Az,x —v*) > 0, Vz € C. This implies that v* € Sp.
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g

Theorem 4.1. Suppose {x}} is a sequence generated by Algorithm 3. Then under Assumptions 1 and
Assumptions 2 and Az # 0, Vz € C. Then {x}} converges weakly to an element of Sp C S.

Proof. Suppose wy, (1) is a set of weak cluster points of {z }. Then we show that w,, () is a nonempty
subset of Sp. Let v* € wy, (7). Then, there exists a subsequence {; } C {7} such that x;, — v*, as
j — o0. Since C' is weakly closed, we have that v* € C'. Furthermore, we can conclude that Av* # 0
since Az # 0, Vo € C. By Lemma 4.3, we have v* € Sp. Hence wy(z;) C Sp. By Lemma 4.2,

lim Ty exists and lim ||zg+1 — z|| = 0, we have
k—ro0 k—ro00

Tim [[2y — ql? — allaxs — ql? — Bl — ] (a.41)
exists, Vq € Sp.

Next we show that 7, — z* € Sp. Let {wy;} and {z, } be two subsequences of {z}} such that
T, — v, j — oo and xg, — ¥, n — o0,

Then we show that * = v*, using (2.4) observe that

2zg, % — %) = ||zp — 0*[)* = |lze — 27 — ¥ P + [J2*]]%; (4.42)
2wp_1, 2" —v") = ||zp1 — | = [|lzmp1 — 2P = [Jo¥|]7 + ||2*]]%; (4.43)

and
2wpg, 2" — ") = ||zp—z — ¥ — [|zmp—z — "> — [J0*|]* + ||=*]]*. (4.44)

Therefore,

2—azy1,2* — ) = —allepr — ' +allzgr — 2t +al o |2 - alla|G (@45)

and
2—Br, 0" —v7) = —Bllans — v |2+ Bllons — 2" + Bll*I2 = Bl |15 (446)

Addition of (4.42), (4.45) and (4.46) gives
2z — axgp_q — Prg_o,x" — V) = (ka — U*H2 —allxg_1 — v*”2 — Blleg—a — v*||2)

= (o = 2*|* = allog-1 — 2" = Bllar-z — 2*|?)

+ (1= = B)(ll*[| = [[v*]*) (4.47)
From (4.30) we know that
im (||zg — 2*|]° — allag—1 — 2*||* = Bllzg—z — z*[|?) (4.48)
k—oo
exists, and
lim (JJoy — v |2 - allag_1 — 2|2 — Bllzg_s — ") (4.49)
k—o0

also exists, which implies with (4.47) that klim (xp — axp_1 — Prp_o,x™ — v*) exists.
— 00
Consequently,

(V" —av® — o, 2" —v*) = lim (zp, — axg;_, — Ban,_,, 2" —v")

j—00
= kli_}m (g — axp—1 — Prp_o, " — V™)
o
:nh_{glo<xkn - amkn—l - 5:(}]9”—27 ‘r* - 'U*>
=(z* — az® — fa*, ¥ — v¥). (4.50)

Thus,
(1—0[—,8)“:6*—1)*”2:0. (4.51)
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Since <0< 1—a,1—a—p # 0, we can conclude that z* = v*. Hence, we deduce that {x}}
converges weakly to a point in Sp. This completes the proof. O

5. CONCLUSIONS

This paper proposed a novel two-step inertial Tseng extragradient method for solving quasimonotone
variational inequalities in real Hilbert spaces. The algorithm incorporates a dual step-size strategy,
adaptively selecting between a self-adaptive rule and an Armijo-like rule at each iteration.The proposed
method effectively addresses limitations of existing extragradient methods, particularly the need for
Lipschitz constants and the computational burden of multiple projections.

STATEMENTS AND DECLARATIONS
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