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Abstract. In this paper, a two-step inertial Tseng extragradient method involving self-adaptive and
Armijo-like step sizes is introduced for solving variational inequalities with a quasimonotone and Lip-
schitz cost function in the setting of a real Hilbert space. Weak convergence of the sequence generated
by the proposed algorithm is proved. An interesting feature of the proposed algorithm is its ability to se-
lect the better step size between the self-adaptive and Armijo-like options at each iteration step. Finally,
the algorithm accelerates and complements several existing iterative algorithms for solving variational
inequalities in Hilbert spaces.
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1. Introduction

LetH be a real Hilbert space with the inner product⟨·, ·⟩ and the induce norm∥ · ∥. Then we suppose
that C is nonempty, closed and convex subset of H (C ⊂ H). In this work, we focus on the following
problem:

Find x∗ ∈ C such that ⟨Ax∗, x− x∗⟩ ≥ 0, ∀x ∈ C. (1.1)
Problem (1.1) is popularly known as the variational inequality problem (VIP) (V I(C,A), for short). Let
Ω denote the set of solutions of V I(A,C) (1.1). That is, Ω := {q ∈ C : ⟨A(q), x−q ≥ 0⟩}. The VIP has
been used as a modeling tool for the study of various real-life problems such as the obstacle problem,
contact problem, traffic network problem, and optimal control problem, and have also been applied in
diverse areas of study such as optimization theory, nonlinear analysis, and computational mechanics.
Those applications of VI(A, C) (1.1) mentioned about are discussed in [8, 9, 15, 17, 30].

Numerous iterative algorithms for solving V I(A,C) (1.1) have been extensively studied and devel-
oped by many authors (see, for example [2, 6, 18, 37] and the references therein). The fundamental idea
involves extending the projected gradient method, originally designed to solve a constrained minimiza-
tion problem involving f over some nonempty closed and convex set say, C . The iterative procedure is
given by: {

x1 ∈ Rn,

xk+1 = PC (xk − αk∇f(xk)) ,
(1.2)
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where PC is the metric projection onto C , αk is a positive real sequence that satisfies some certain
conditions and ∇f is the gradient of the smooth function f [36]. One of the early generalizations of
the projected gradient method to the setting of VIP was the method proposed by Goldstein [31]:{

x1 ∈ Rn

xk+1 = PC(xk − λAxk),
(1.3)

where λ is a positive real number, PC is the projection operator and A is a given mapping. But the
convergence of this method is only guaranteed under a highly restrictive condition that the operators
are strongly monotone or inverse strongly monotone (see for [35]).

Korpelevich [16] improved Goldstein’s method by extending the operator A to monotone and L-
Lipschitz continuous mapping. He then introduced the famous extragradient method (EGM) given by:

x1 ∈ Rn,

yk = PC(xk − λAxk),

xk+1 = PC(xk − λAyk),

(1.4)

where λ ∈ (0, 1/L).

Remark 1.1. It is well-known that one of the drawbacks of the EGM arises from its requirement to
perform two projections onto the closed convex set during each iteration. This requirement can be
computationally expensive especially when the structure of C is not simple. Another drawback of this
method is the fact that parameter λ depends on the explicit value of the Lipschitz constant L which is
can be challenging to obtain.

Many authors have tried to address Remark 1.1 in different directions (see [5, 7, 10, 12, 22, 28, 29, 38]).
Censor [4] introduced a new method called the subgradient extragradient method (SEGM) which is
defined as follows:


x1 ∈ H,
yk = PC (xk − λAxk) ,
Tn = {w ∈ H| ⟨xk − λAxk − yk, w − yk⟩ ≤ 0} ,
xk+1 = PTk

(xk − λAyk), k > 1,

Another modification of the EGM was the method introduced by Tseng [34]. His idea was to replace
the second projection onto C by a function evaluation. His algorithm is the following:

x1 ∈ H,

yk = PC (xk − λAxk) ,

xk+1 = yk − λ (Ayk −Axk) ,

(1.5)

where λ ∈ (0, 1/L). Tseng [34] proved that the sequence generated by [34] converges weakly to a
point in Ω. The advantage of the above Tseng’s method is that it requires only one computation of
projection onto the feasible set C and two evaluations of A per iteration.

It is worthy of mention that the sequences generated by all the algorithms above may have slow con-
vergence properties. To accelerate the convergence, several authors have adopted the inertial accelera-
tion technique which dates back to the early work of Polyak [25] in the setting of convex minimization.
Alvarez and Attouch [1] adopted this principle and extended it to general maximal monotone operators
through a proximal point framework. They proposed a new algorithm called inertial proximal point
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algorithm which is defined as: 
x0, x1 ∈ H,

yk = xk + αk(xk − xk−1),

xk+1 = (I + λkA)
−1yk,

(1.6)

where (I+λkA)−1 is the resolvent of the maximal monotone operatorA and λk is a positive sequence
that satisfies some appropriate conditions. Then, the authors proved that the sequence xk generated by
(1.6) converges weakly to a zero of A provided αn ∈ [0, 1) satisfies the following condition:

∞∑
k=1

αk∥xk − xk−1∥2 < +∞. (1.7)

In the setting of VIP, Thong and Hieu [33] introduced an inertial step in the Tseng’s method for a
better performance in a real Hilbert space. Their algorithm is defined as:

x0, x1 ∈ H,

wk = xk + αk(xk + xk+1),

yk = PC(wk − λkwk),

xk+1 = yk − λk(Ayk −Awk),

(1.8)

where A is monotone and Lipschitz continuous and λk is a step-size obtained using Armijo-like step
size rule.

Some results from using one-step inertial have shown that algorithms with this acceleration tech-
nique may fail to outperform their counterpart that does not involve this step. A counter example was
given in [27] which which one-step inertial extrapolation fails to provide acceleration. Polyak men-
tioned in [26] that the use of inertial of more than two points xk, xk−1 could provide acceleration.
Polyak [26] also discussed that the multi-step inertial methods can boost the speed of optimization
methods though neither the convergence nor the rate of such multi-step inertial methods was estab-
lished in [26]. Recently, several authors have explore the concept of two-step inertia to accelerate
convergence (see for example, [3, 13, 24]).

Remark 1.2. It is important to note that all the improvements of the EGM and their accelerated versions
mentioned above have not fully addressed Remark 1.1. They are yet to dispense with the dependency
of the step-size on the explicit value of the Lipschitz constant.

In recent years, different rules of selecting the step-size have been discussed since the arising of sto-
chastic approximation methods. Liu and Yang [20] introduced a new self-adaptive method for solving
variational inequalities with Lipschitz continuous and quasimonotone mapping (or Lipschitz continu-
ous mapping without monotonicity) in real Hilbert space.The method is defined as:

x1 ∈ H,
yk = PC (xk − λkAxk) ,

λk+1 =

{
min

{
µ∥xk−yk∥
∥Axk−Ayk∥ , λk

}
, ifAxk −Ayk ̸= 0,

λk, otherwise,
xk+1 = yk − λk (Ayk −Axk) .

They introduced the adaptive step-size to modify the gradient method and get the weak convergence
without knowing the Lipschitz constant. And another popular step-size is Armijo like step-size, which
is a fundamental step size selection technique in optimization algorithms. It ensures sufficient decrease
in the objective function while balancing computational efficiency.
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Recently Mewomo et al. [23] used the two-step inertial acceleration strategy and the adaptive step-
size to introduce a two-step inertial Tseng method involving quasimonotone and uniformly continuous
operator. Their algorithm is given by:
Algorithm: 1

Initialization: Given γ > 0, l ∈ (0, 1), µ ∈ (0, 1). Let x−1, x0, x1 ∈ H be arbitrary points and given
xk−2, xk−1, xk
Iterative: Calculate xk+1 as follows
Step 1: Set wk = xk + α(xk − xk−1) + β(xk−1 − xk−2) and compute

yk = PC (wk − λkAwk) ,

where λ(2)k = γlmk and mk is the smallest nonnegative integer m such that

λk ∥Awk −Ayk∥ ≤ µ ∥wk − yk∥ . (1.9)

If yk = wk then stop: yk is a solution of the problem (VIP). Otherwise,
Step 2: Compute

xk+1 = yk − λk(Ayk − wk).

Set k := k + 1 and go to Step 1.
They proved weak convergence of the sequence generated by their proposed algorithm.

From different angle, Peng et al. [14] used the Armijo-like condition to proposed a modified Tseng
method for solving pseudo-monotone variational inequality problems and the fixed point problems of
the demi-contractive mappings. Their algorithm is defined as:
Algorithm: 2

Initialization: Given k = 1, ρ > 0, λ0 > 0, γ > 0, l ∈ (0, 1), µ ∈ (0, 1). Let x0, x1 ∈ H
be arbitrary points
Step 1: Given the current iterate xk−1, xk

wk = xk + αk(xk − xk−1),

where

αk =

{
min

{
ξk

∥xk−xk−1∥ , ρ
}
, ifxk ̸= xk−1,

ρ, otherwise

Step 2: Compute
yk = PC (wk − λkAwk) ,

where λk = min(λ
(1)
k , λ

(2)
k )

λ
(1)
k =

{
min

{
µ(∥wk−yk∥)
A(wk)−A(yk)

, λk−1

}
, if A (wk)−A (yk) ̸= 0,

λk−1, otherwise .
(1.10)

where λ(2)k = γlmk and mk is the smallest nonnegative integer m such that

λk ∥Awk −Ayk∥ ≤ µ ∥wk − yk∥ . (1.11)
qk = (1− βk)zk + βkUzk, (1.12)

where zk = yk + λk(Awk −Ayk).
If wk = yk = qk, then stop wk is a solution of wk ∈ V I(C,A) ∩ Fix(U). Otherwise
Step 3: Compute

xk+1 = ηkDk + (1− ηk)qk
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where Dk = (1− θk)f(xk) + θkf(xk−1), Set k := k + 1 and go to Step 1.

In the step2 of Algorithm 2, Peng et al choose the step-size as the minimum of the adaptive step-size
and the Armijo rule step size. In this paper, inspired by the work of [14] and [23], we have the following
contributions:

• We propose a novel algorithm that incorporates a two-step inertial technique to accelerate con-
vergence. Unlike traditional one-step inertial methods, our approach leverages historical infor-
mation from two preceding iterations, enhancing the algorithm’s momentum and convergence
speed.

• Our work extends the applicability of Tseng’s extragradient method to quasimonotone VIPs, a
broader and more general class of problems compared to the monotone or strongly monotone
cases typically studied. This extension is significant because quasimonotonicity covers a wider
range of practical problems while requiring weaker assumptions for convergence.

2. Preliminaries

In this section, we review the definitions and lemmas required for this article.

Definition 2.1. Let H be a real Hilbert space. An operator A : H → H is said to be:
(i) Lipschitz continuous on H , if there exist a constant L > 0 such that

||Ax−Ay|| ≤ L||x− y||, ∀x, y ∈ H.

(ii) uniformly continuous, if for every ϵ > 0, there exists δ = δ(ϵ) > 0, such that

||Ax−Ay|| < ϵ, whenever ||x− y|| < δ, ∀x, y ∈ H;

(iii) sequentially weakly-strongly continuous, if for each sequence xk, we have xk ⇀ x ∈ H implies
that Axk → Ax ∈ H ;
(iv) sequentially weakly continuous, if for each sequence xn, we have xn ⇀ x ∈ H implies that
Axk → Ax ∈ H ;
(v) monotone, if ⟨Ax−Ay, x− y⟩ ≥ 0, ∀x, y ∈ H;
(vi) α-strongly pseudomonotone, if there exists α > 0 such that

⟨Ax, y − x⟩ ≥ 0 ⇒ ⟨Ay, y − x⟩ ≥ α||x− y||2, ∀x, y ∈ H;

(vii) pseudomonotone, if

⟨Ax, y − x⟩ ≥ 0 ⇒ ⟨Ay, y − x⟩ ≥ 0, ∀x, y ∈ H;

(viii) quasimonotone, if

⟨Ax, y − x⟩ > 0 ⇒ ⟨Ay, y − x⟩ ≥ 0, ∀x, y ∈ H;

From the definition above, the following implications hold: (v) =⇒ (vii) =⇒ (viii) but the converse
is not true in general. We also note that uniform continuity is a weaker notion than Lipschitz continuity.

Furthermore, it is well known that if D is a convex subset of H , then A : D → H is uniformly
continuous if and only if, for every ϵ > 0, there exists a constant K < +∞ such that

||Ax−Ay|| ≤ K||x− y||+ ϵ, ∀x, y ∈ D.

Let SD be the solution set of the dual formulation of the VIP (1.1) defined as: find x∗ ∈ C such that

⟨Az, z − x∗⟩ ≥ 0, ∀z ∈ C.
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Then, SD is a closed and convex subset of C , and since A is continuous and C is convex, we have
that SD ⊂ S. We have the following result on the solution set of the dual VIP .

Lemma 2.2. Let x, y, z ∈ H and a, b ∈ R. Then
||(1 + a)x− (a− b)y − bz||2 =(1 + a)||x||2 − (a− b)||y||2 − b||z||2

+ (1 + a)(a− b)||x− y||
+ b(1 + a)||x− z||2 − b(a− b)||y − z||2.

Lemma 2.3. Let C be a nonempty closed subset of a real Hilbert space H . ∀v ∈ H and ∀z ∈ C , we
have

z = PCv ⇔ ⟨v − z, z − y⟩ ≥ 0,∀y ∈ C.

Lemma 2.4. The following identities hold for all u, v ∈ H :

2⟨u, v⟩ = ∥u∥2 + ∥v∥2 − ∥u− v∥2 = ∥u+ v∥2 − ∥u∥2 − ∥v∥2.

Lemma 2.5. ([19]) Suppose either
(a) A is pseudomonotone on C and S = ∅;
(b) A is the gradient of G, where G is a differential quasiconvex function on an open set K ⊃ C and
attains its global minimum on C ;
(c) A is quasimonotone on C , A ̸= 0 on C and C is bounded;
(d) A is quasimonotone on C, A = 0 on C and there exists a positive number r such that, for every
x ∈ C with ||x|| ≥ r, there exists y ∈ C such that ||y|| ≤ r and ⟨Ax, y − x⟩;
(e) A is quasimonotone on C , intC = ∅ and there exists x∗ ∈ S such that Ax∗ ̸= 0,

then SD is nonempty.

Lemma 2.6. ([11]) Let H be a Hilbert space and A : H → H be a uniformly continuous operator.
Suppose x ∈ H and ψ ≥ σ > 0. The following inequality holds:

∥x− PC(x− ψAx)∥
ψ

≤ ∥x− PC(x− σAx)∥
σ

.

3. Propose the Algorithm

The subsequent section outlines the presentation of the algorithm. To ensure the weak convergence
properties of the algorithm are valid, we propose the following assumptions.
Assumption 1.
(i) SD ̸= ∅;
(ii) A is uniformly continuous on H ;
(iii)A satisfies the following condition: wheneverxk ⊂ C andxk ⇀ v∗, one has ∥Av∗∥ ≤ lim inf

n→∞
∥Axk∥;

(iv) A is quasimonotone on H ;
(v) The set {v ∈ C : Av = 0}\SD is a finite set.

Assumption 2. Assume that α and β meet the following conditions:
(a) 0 ≤ α ≤ 1−µ

3+µ ;
(b) max{2α(1−µ

3+µ)− (1− α), 12 [α(1 + µ)− ( (1−µ)(1−α)2

1+α )]} < β ≤ 0;
(c) 2α2µ− (1− 3α) + µ(1− α)− β(4α+ 3− µ) + 2µβ2 < 0.

Under the assumptions above, we propose an algorithm for solving VIP (1.1):
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Algorithm: 3
Initialization: Given γ > 0, l ∈ (0, 1), µ ∈ (0, 1). Let x−1, x0, x1 ∈ H be arbitrary points and given
xk−2, xk−1, xk
Iterative: Calculate xk+1 as follows
Step 1: Set wk = xk + α(xk − xk−1) + β(xk−1 − xk−2) and compute

yk = PC (wk − λkAwk) ,

where λk = min(λ
(1)
k , λ

(2)
k )

λ
(1)
k =

{
min

{
µ(∥wk−yk∥)
||Awk−A(yk|| , λk−1

}
, if Awk −Ayk ̸= 0,

λk−1, otherwise .
(3.1)

λ
(2)
k = γlmk and mk is the smallest nonnegative integer m such that

λ
(2)
k ∥Awk −Ayk∥ ≤ µ ∥wk − yk∥ . (3.2)

If yk = wk then stop: yk is a solution of the problem (VIP). Otherwise,
Step 2: Compute

xk+1 = yk − λk(Ayk −Awk),

Set k := k + 1 and go to Step 1.

4. Convergence Analysis

Lemma 4.1. Under the Assumption (i)–(iv), the sequence λk generated Algorithm 3 satisfying

min{ lµ
L
, λ0} ≤ λk ≤ λ0. (4.1)

Proof. Firstly, it is obvious that λ(1)k is a monotonically decreasing sequence. Since A is a Lipschitz
continuous mapping with constant L > 0, in the case of Awk −Ayk ̸= 0, we have

µ ∥wk − yk∥
||Awk −Ayk||

≥ µ

L

∥wk − yk∥
∥wk − yk∥

=
µ

L

□

which implies that 0 < min( lµL , λ0) < min(µL , λ0) ≤ λ
(1)
k ≤ λ0. On the other hand, from the

definition of λ(2)k we have

λ
(2)
k

l

∥∥Awk −Ayk
∥∥ ≥ µ

∥∥wk − yk
∥∥

combining this with A is Lipschitz continuous on H, we obtain

λ
(2)
k

l
L ∥wk − yk∥ ≥ µ ∥wk − yk∥

so λ(2)k ≥ lµ
L , therefore min{ lµ

L , λ0} ≤ λk ≤ λ0.

Lemma 4.2. Let {xk} be a sequence generated by Algorithm 3. Then, {xk} is bounded.
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Proof. Let q ∈ SD . First of all, we estimate ||xk+1 − q||2. It can be obtained from the definition of xk+1

that:

||xk+1 − q||2 =||yk − λk(Ayk −Awk)− q||2

=||yk − q||2 + λ2k||Ayk −Awk||2 − 2λk⟨Ayk −Awk, yk − q⟩
=||wk − q||2 + ||wk − yk||2 + 2⟨yk − wk, wk − q⟩+ λ2k||Ayk −Awk||2

− 2λk⟨Ayk −Awk, yk − q⟩
=||wk − q||2 + ||wk − yk||2 − 2⟨yk − wk, yk − wk⟩+ 2⟨yk − wk, yk − q⟩

+ λ2k||Ayk −Awk||2 − 2λk⟨Ayk −Awk, yk − q⟩
=||wk − q||2 − ||wk − yk||2 + 2⟨yk − wk, yk − q⟩+ λ2k||Ayk −Awk||2

− 2λk⟨Ayk −Awk, yk − q⟩. (4.2)

From the definition of yk, and the fact that SD ⊂ C , it can be obtained by Lemma 2.3 that:

⟨wk − λkAwk − yk, yk − q⟩ ≥ 0,

that is
⟨yk − wk, yk − q⟩ ≤ −λk⟨Awk, yk − q⟩. (4.3)

Appling (4.3) to (4.2), we will have

||xk+1 − q||2 ≤||wk − q||2 − ||wk − yk||2 − 2λk⟨Awk, yk − q⟩
+ λ2k||Ayk −Awk||2 − 2λk⟨Ayk −Awk, yk − q⟩

=||wk − q||2 − ||wk − yk||2 + λ2k||Ayk −Awk||2

− 2λk⟨Ayk, yk − q⟩. (4.4)

Since q ∈ SD, λk > 0 and yk ∈ C , we have that

λk⟨Ayk, yk − q⟩ ≥ 0. (4.5)

Therefore, from (4.4) we can have

||xk+1 − q||2 ≤ ||wk − q||2 − ||wk − yk||2 + λ2k||Ayk −Awk||2. (4.6)

From the definition of λk, if Awk −Ayk ̸= 0, then we have

λ
(1)
k = min{ µ||wk − yk||

||Awk −Ayk||
, λk−1}

which means:

λ
(1)
k ≤ µ||wk − yk||

||Awk −Ayk||
,

λ
(1)
k ||Awk −Ayk|| ≤ µ||wk − yk||.

Also, we have λ(2)k ∥Awk −Ayk∥ ≤ µ ∥wk − yk∥. Therefore,

λk ∥Awk −Ayk∥ ≤ µ ∥wk − yk∥ . (4.7)

Substituting (4.7) into (4.6), we have

||xk+1 − q||2 ≤||wk − q||2 − ||wk − yk||2 + µ2||wk − yk||2

=||wk − q||2 − (1− µ2)||wk − yk||2. (4.8)
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Observe that

||xk+1 − yk|| =||yk − λk(Ayk −Awk)− yk||
=λk||Ayk −Awk||
≤µ||wk − yk||,

and

||xk+1 − wk|| ≤||xk+1 − yk||+ ||wk − yk||
≤µ||wk − yk||+ ||wk − yk||
=(1 + µ)||wk − yk||. (4.9)

Hence, using (4.9) into (4.8), we obtain that

−||wk − yk||2 ≤ − 1

(1 + µ)2
||xk+1 − wk||2. (4.10)

Applying (4.10) into (4.8), we have

||xk+1 − q||2 ≤ ||wk − q||2 − (
1− µ

1 + µ
)||xk+1 − wk||2. (4.11)

Also,

wk − q =xk + α(xk − xk−1) + β(xk−1 − xk−2)− q

=(1 + α)(xk − q)− (α− β)(xk−1 − q)− β(xk−2 − q).

Using Lemma 2.2, we get

||wk − q||2 =||(1 + α)(xk − q)− (α− β)(xk−1 − q)− β(xk−2 − q)||2

=(1 + α)||xk − q||2 − (α− β)||xk−1 − q||2 − β||xk−2 − q||2

+ (1 + α)(α− β)||xk − xk−1||2 + β(1 + α)||xk − xk−2||
− β(α− β)||xk−1 − xk−2||2. (4.12)

Furthermore, it can be obtained that

||xk+1 − wk||2 =∥xk+1 − [xk + α(xk − xk−1) + β(xk−1 − xk−2)]∥2

=∥xk+1 − xk − α(xk − xk−1)− β(xk−1 − xk−2)∥2

=∥xk+1 − xk∥2 − 2α⟨xk+1 − xk, xk − xk−1⟩ − 2β⟨xk+1 − xk, xk−1 − xk−2⟩
+ α2||xk − xk−1||2 + 2αβ⟨xk − xk−1, xk−1 − xk−2⟩+ β2||xk−1 − xk−2||

≥∥xk+1 − xk∥2 − α∥xk+1 − xk∥2 − α∥xk − xk−1∥2 + α2∥xk − xk−1∥
− |β|α∥xk − xk−1∥2 − |β|α∥xk−1 − xk−2∥2 + β2∥xk−1 − xk−2∥2

− |β|∥xk+1 − xk∥2 − |β|∥xk−1 − xk−2∥2

=(1− |β| − α)∥xk+1 − xk∥2 + (α2 − α− |β|α)∥xk − xk−1∥2

+ (β2 − |β| − |β|α)∥xk−1 − xk−2∥2. (4.13)
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Applying (4.12) and (4.13) with (4.11) and note that β < 0 we have
||xk+1 − q||2 ≤(1 + α)∥xk − q∥2 − (α− β)∥xk−1 − q∥2 − β∥xk−2 − q∥2

+ (1 + α)(α− β)∥xk − xk−1∥2 + β(1 + α)∥xk − xk−2∥2

− β(α− β)∥xk−1 − xk−2∥2 −
(1− µ

1 + µ

)
(1− |β| − α)∥xk+1 − xk∥2

−
(1− µ

1 + µ

)
(α2 − α− |β|α)∥xk − xk−1∥2

−
(1− µ

1 + µ

)
(β2 − |β| − |β|α)∥xk−1 − xk−2∥2

≤(1 + α)∥xk − q∥2 − (α− β)∥xk−1 − q∥2 − β∥xk−2 − q∥2 +
[
(1 + α)(α− β)

−
(1− µ

1 + µ

)
(α2 − α+ βα)

]
∥xk − xk−1∥2

− [β(α− β) +
(1− µ

1 + µ

)
(β2 + β + βα)]∥xk−1 − xk−2∥2

−
(1− µ

1 + µ

)
(1 + β − α)∥xk+1 − xk∥2. (4.14)

By rearranging the inequality above we obtain that:

∥xk+1 − q∥2 − α∥xk − q∥2 − β∥xk−1 − q∥2 +
(1− µ

1 + µ

)
(1 + β − α)∥xk+1 − xk∥2

≤∥xk − q∥2 − α∥xk−1 − q∥2 − β∥xk−2 − q∥2 +
(1− µ

1 + µ

)
(1 + β − α)∥xk − xk−1∥2

+ [(1 + α)(α− β)−
(1− µ

1 + µ

)
(α2 − 2α+ βα+ β + 1)

]
∥xk − xk−1∥2

− [β(α− β) +

(
1− µ

1 + µ

)
(β2 + β + βα)]∥xk−1 − xk−2∥2. (4.15)

Now, let

Γk = ∥xk − q∥2 − α∥xk−1 − q∥2 − β∥xk−2 − q∥2 +
(
1− µ

1 + µ

)
(1 + β − α)∥xk − xk−1∥2.

Then we can rewrite (4.15) as

Γk+1 ≤Γk + [(1 + α)(α− β)−
(
1− µ

1 + µ

)
(α2 − 2α+ βα+ β + 1)]∥xk − xk−1∥2

− [β(α− β) +

(
1− µ

1 + µ

)
(β2 + β + βα)]∥xk−1 − xk−2∥2. (4.16)

Claim: Γk ≥ 0, ∀k > 1. Since

Γk =∥xk − q∥2 − α∥xk−1 − q∥2 − β∥xk−2 − q∥2 +
(
1− µ

1 + µ

)
(1 + β − α)∥xk − xk−1∥2

≥∥xk − q∥2 − 2α∥xk − xk−1∥2 − 2α∥xk − q∥2 − β∥xk−2 − q∥2

+

(
1− µ

1 + µ

)
(1 + β − α)∥xk − xk−1∥2

=(1− 2α)∥xk − q∥2 +
[(

1− µ

1 + µ

)
(1 + β − α)− 2α

]
∥xk − xk−1∥2

− β||xk−2 − q||2. (4.17)
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From Assumption 2, we have that α < 1
2 , β ≤ 0 and 0 < α < 1−µ

3+µ . Tt can be conclude that Γk ≥ 0,
∀k > 1. Let

k1 :=− [(1 + α)(α− β)−
(
1− µ

1 + µ

)
(α2 − 2α+ βα+ β + 1)]

k2 :=− [(1 + α)(α− β)−
(
1− µ

1 + µ

)
(α2 − 2α+ βα+ β + 1)− β(α− β)

−
(
1− µ

1 + µ

)
(β2 + β + βα)].

(4.18)

Thus, we deduce from (4.16) that

Γk+1 − Γk ≤ k1(∥xk−1 − xk−2∥2 − ∥xk − xk−1∥2)− k2∥xk−1 − xk−2∥2. (4.19)

From Assumption 2(b),

max
{
2α(

1− µ

3 + µ
)− (1− α),

1

2
[α(1 + µ)− (

(1− µ)(1− α)2

1 + α
)]
}
< β ≤ 0,

which implies that
1

2

[
α(1 + µ)− (1− µ)(1− α)2

1 + α

]
< β, (4.20)

which can conclude that k1 > 0.
By Assumption 2(c) we can have k2 > 0, thus, (4.19) can be rewritten as

Γk+1 + k1∥xk − xk−1∥2 ≤ Γk + k1∥xk−1 − xk−2∥2 − k2∥xk−1 − xk−2∥2. (4.21)

Letting Γ′
k = Γk + k1∥xk−1 − xk−2∥2. Then, Γ′

k ≥ 0, ∀k ≥ 1. Therefore, we deduce from (4.21) that

Γ
′
k+1 ≤ Γ

′
k, (4.22)

which implies that the sequence Γ
′
k+1 is decreasing and bounded from below and thus lim

n→∞
Γ

′
k exists.

Hence, by rearranging (4.21) and letting k approach infinity, we have

lim
k→∞

k2||xk−1 − xk−2||2 = 0 =⇒ lim
k→∞

||xk−1 − xk−2|| = 0. (4.23)

It is easy to see that

∥xk+1 − wk∥ =∥xk+1 − xk − α(xk − xk−1)− β(xk−1 − xk−2)∥
≤∥xk+1 − xk∥+ α∥xk − xk−1∥+ β∥xk−1 − xk−2∥. (4.24)

Consequently, by (4.23) we have

lim
k→∞

∥xk+1 − wk∥ = 0. (4.25)

Furthermore,

∥xk − wk∥ =∥xk − xk − α(xk − xk−1)− β(xk−1 − xk−2)∥
≤α∥xk − xk−1∥+ β∥xk−1 − xk−2∥ → 0, k → ∞. (4.26)
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Observe that

∥xk+1 − wk∥ = ∥yk − λk(Ayk −Awk)− wk∥
≥ ∥yk − wk∥ − λk∥Ayk −Awk∥
≥ ∥yk − wk∥ − µ∥yk − wk∥
= (1− µ)∥yk − wk∥. (4.27)

Using (4.25 )we deduce from (4.27) that

lim
k→∞

∥wk − yk∥ = 0. (4.28)

Also,
∥xk − yk∥ ≤ ∥xk − wk∥+ ∥wk − yk∥ → 0, k → ∞. (4.29)

Due to the existence of the limitΓ′
k and (4.23), we can obtain that the limit ofΓk also exists and therefore,

the sequence {Γk} is bounded.
Since lim

k→∞
||xk+1 − xk|| = 0, from the definition of Γk we can get that

lim
k→∞

(∥xk − q∥2 − α∥xk−1 − q∥2 − β∥xk−2 − q∥2) (4.30)

exists. Due to the boundedness of {Γk}, we have from (4.17) that {xk} is bounded and {yk} and {wk}
are bounded. □

Lemma 4.3. Let {xk} be the sequence generated by Algorithm 3, satisfying Assumptions 1 (i)-(iv) and
Assumptions 2 (a)-(c), and assuming that lim

k→∞
(wk−yk) = 0. If v∗is one of the weakly clustered points

of {yk}, then we have at least one of the following: v∗ ∈ SD or Av∗ = 0.

Proof. By Lemma 4.2 above, it can be concluded that {yk} is bounded. Therefore, let v∗ be a weak
cluster point of {yk}. Hence, we denote {ykj} as a subsequence of {yk} such that ykj ⇀ v∗ ∈ C . Now
we discuss in two cases.

Case 1. First, we assume that lim
j→∞

||Aykj || = 0. Consequently, lim
j→∞

||Aykj || = lim inf
j→∞

||Aykj || = 0.

Through the assumption above that ykj ⇀ v∗ ∈ C and A satisfies Assumption 1 (iii), that is

0 ≤ ||Av∗|| ≤ lim inf
j→∞

||Aykj || = 0. (4.31)

Which just implies that Av∗ = 0.

Now we consider the another situation.

Case 2. If lim sup
j→∞

∥Aykj∥ > 0. Without loss of generality, we take lim
j→∞

∥Aykj∥ = M1 > 0. It then

follows that there exists a K ∈ N such that ∥Aykj∥ > M1
2 , for all j ≥ K. Since ykj = PC(wkj −

λkjAwkj ), we have

⟨wkj − λkjAwkj − ykj , x− ykj ⟩ ≤ 0.

Hence, 1

λkj
⟨wkj − ykj , x− ykj ⟩+ ⟨Awkj , ykj − wkj ⟩ ≤ ⟨Awkj , x− wkj ⟩. (4.32)

For the weak convergence of {wkj}, since {wkj} is bounded. Then, by the Lipschitz continuity of A,
{Awkj} is bounded. By (4.28) we can get that

∥wkj − ykj∥ → 0, j → ∞.
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Therefore, {ykj} is also bounded and using Lemma 4.1 we get that λkj ≥ min{ lµ
L , λ0}. Passing (4.32)

to the limit as j → ∞, that is
lim inf
j→∞

⟨Awkj , x− wkj ⟩ ≥ 0,∀x ∈ C. (4.33)

Observe that
⟨Aykj , x− ykj ⟩ =⟨Aykj −Awkj , x− wkj ⟩+ ⟨Awkj , x− wkj ⟩

+ ⟨Aykj , wkj − ykj ⟩. (4.34)
Thus, we can get lim

j→∞
||Awkj−Aykj || = 0, for the lim

j→∞
||wkj−ykj || = 0 and theL -Lipschitz continuity

on H of A. Together with (4.33) and (4.34) which implies that
lim
j→∞

⟨Aykj , x− ykj ⟩ ≥ 0. (4.35)

If we suppose that lim sup
j→∞

⟨Aykj , x−ykj ⟩ > 0, then there exists a subsequence denoted by {ykjn} such

that lim
n→∞

⟨Aykjn , x− ykjn ⟩ > 0, that is there exists n0 ∈ N such that

⟨Aykjn , x− ykj ⟩ ≥ 0,∀n > n0. (4.36)
By quasimonotonicity of A, we get ⟨Ax, x− ykjn ⟩ ≥ 0, as n→ ∞, we conclude that v∗ ∈ SD . On the
other hand we suppose that if lim sup

j→∞
⟨Aykj , x− ykj ⟩ = 0. Then, (4.33) implies that

lim
j→∞

⟨Aykj , x− ykj ⟩ = 0. (4.37)

Let ϵj := |⟨Aykj , x− ykj ⟩|+ 1
j+1 . Thus, we obtain that

⟨Aykj , x− ykj ⟩+ ϵj > 0,∀j ≥ 1. (4.38)
Furthermore, for each j ≥ K we can get Aykj ̸= 0. Defining that

rkj =
Aykj

||Aykj ||2
,∀ j ≥ K,

then ⟨Aykj , rkj ⟩ = 1 for each j ≥ K. Thus, we can conclude from (4.38) that,
⟨Aykj , x+ ϵjrkj − ykj ⟩ > 0, j ≥ K.

Since A is quasimonotone on H , we get
⟨A(x+ ϵjrkj ), x+ ϵjrkj − ykj ⟩ ≥ 0. (4.39)

Thus,
⟨Ax, x+ ϵjrkj − ykj ⟩ =⟨Ax−A(x+ ϵjrkj ), x+ ϵjrkj − ykj ⟩

+ ⟨A(x+ ϵjrkj ), x+ ϵjrkj − ykj ⟩⟩
≥⟨Ax−A(x+ ϵjrkj ), x+ ϵjrkj − ykj ⟩
≥ − ∥Ax−A(x+ ϵkrkj )∥∥x+ ϵkrkj − ykj∥
≥ − ϵjL∥rkj∥∥x+ ϵjrkj − ykj∥

=− ϵjL
1

∥Aykj∥
∥x+ ϵjrkj − ykj∥

≥ − ϵjL
2

M1
∥x+ ϵjrkj − ykj∥. (4.40)

Observe that, tending j → ∞, for {x+ ϵjrkj − ykj} is bounded and lim
k→∞

ϵj = 0, we can conclude that
⟨Ax, x− v∗⟩ ≥ 0, ∀x ∈ C . This implies that v∗ ∈ SD .



SOLVING QUASIMONOTONE VARIATIONAL INEQUALITY PROBLEM 197

□

Theorem 4.1. Suppose {xk} is a sequence generated by Algorithm 3. Then under Assumptions 1 and
Assumptions 2 and Ax ̸= 0, ∀x ∈ C . Then {xk} converges weakly to an element of SD ⊂ S.

Proof. Supposeww(xk) is a set of weak cluster points of {xk}. Then we show thatww(xk) is a nonempty
subset of SD . Let v∗ ∈ ww(xk). Then, there exists a subsequence {xkj} ⊂ {xk} such that xkj → v∗, as
j → ∞. Since C is weakly closed, we have that v∗ ∈ C . Furthermore, we can conclude that Av∗ ̸= 0
since Ax ̸= 0, ∀x ∈ C . By Lemma 4.3, we have v∗ ∈ SD . Hence ww(xk) ⊂ SD . By Lemma 4.2,
lim
k→∞

Γk exists and lim
k→∞

||xk+1 − xk|| = 0, we have

lim
k→∞

[||xk − q||2 − α||xk−1 − q||2 − β||xk−1 − q||2] (4.41)

exists, ∀q ∈ SD .
Next we show that xk ⇀ x∗ ∈ SD . Let {xkj} and {xkn} be two subsequences of {xk} such that

xkj ⇀ v∗, j → ∞ and xkn ⇀ x∗, n→ ∞.
Then we show that x∗ = v∗, using (2.4) observe that

2⟨xk, x∗ − v∗⟩ = ||xk − v∗||2 − ||xk − x∗||2 − ||v∗||2 + ||x∗||2; (4.42)

2⟨xk−1, x
∗ − v∗⟩ = ||xk−1 − v∗||2 − ||xk−1 − x∗||2 − ||v∗||2 + ||x∗||2; (4.43)

and
2⟨xk−2, x

∗ − v∗⟩ = ||xk−2 − v∗||2 − ||xk−2 − x∗||2 − ||v∗||2 + ||x∗||2. (4.44)
Therefore,

2⟨−αxk−1, x
∗ − v∗⟩ = −α||xk−1 − v∗||2 + α||xk−1 − x∗||2 + α||v∗||2 − α||x∗||2; (4.45)

and
2⟨−βxk−1, x

∗ − v∗⟩ = −β||xk−1 − v∗||2 + β||xk−1 − x∗||2 + β||v∗||2 − β||x∗||2; (4.46)
Addition of (4.42), (4.45) and (4.46) gives

2⟨xk − αxk−1 − βxk−2, x
∗ − v∗⟩ =

(
∥xk − v∗∥2 − α∥xk−1 − v∗∥2 − β∥xk−2 − v∗∥2

)
− (∥xk − x∗∥2 − α∥xk−1 − x∗∥2 − β∥xk−2 − x∗∥2)
+ (1− α− β)(∥x∗∥ − ∥v∗∥2). (4.47)

From (4.30) we know that
lim
k→∞

(∥xk − x∗∥2 − α∥xk−1 − x∗∥2 − β∥xk−2 − x∗∥2) (4.48)

exists, and
lim
k→∞

(∥xk − v∗∥2 − α∥xk−1 − x∗∥2 − β∥xk−2 − x∗∥2) (4.49)

also exists, which implies with (4.47) that lim
k→∞

⟨xk − αxk−1 − βxk−2, x
∗ − v∗⟩ exists.

Consequently,
⟨v∗ − αv∗ − βv∗, x∗ − v∗⟩ = lim

j→∞
⟨xkj − αxkj−1

− βxnj−2 , x
∗ − v∗⟩

= lim
k→∞

⟨xk − αxk−1 − βxk−2, x
∗ − v∗⟩

= lim
n→∞

⟨xkn − αxkn−1 − βxkn−2 , x
∗ − v∗⟩

=⟨x∗ − αx∗ − βx∗, x∗ − v∗⟩. (4.50)
Thus,

(1− α− β)||x∗ − v∗||2 = 0. (4.51)
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Since β ≤ 0 < 1 − α, 1 − α − β ̸= 0, we can conclude that x∗ = v∗. Hence, we deduce that {xk}
converges weakly to a point in SD . This completes the proof. □

5. Conclusions

This paper proposed a novel two-step inertial Tseng extragradient method for solving quasimonotone
variational inequalities in real Hilbert spaces. The algorithm incorporates a dual step-size strategy,
adaptively selecting between a self-adaptive rule and an Armijo-like rule at each iteration.The proposed
method effectively addresses limitations of existing extragradient methods, particularly the need for
Lipschitz constants and the computational burden of multiple projections.
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