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Abstract. We study the issue of the strong convergence together with estimates of convergence order
of an averaged CQ algorithm for solving the split feasibility problem in Hilbert space. For this purpose,
a Hölderian type bounded linear regularity property is introduced. When the involved parameters and
stepsizes satisfy certain mild conditions, the strong convergence together with estimates of convergence
order of the averaged CQ algorithm is established under the Hölderian type bounded linear regularity
property. For the case when the involved parameters are all equal to constant 1, the averaged CQ algorithm
is reduced to the well-known CQ algorithm. As applications, we obtain the strong convergence together
with estimates of convergence order of the CQ algorithm, which extends the corresponding ones in (Wang,
et al. Inverse Problem, 2017, 33: 055017). Finally, numerical experiments are presented to illustrate the
effectiveness of the algorithm. Compared to other known algorithms, our algorithm performs better.

Keywords. Split feasibility problems, Averaged CQ algorithm, Strong convergence, Estimate of con-
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1. Introduction

Let H1 and H2 be real Hilbert spaces. Let C and Q be nonempty closed convex subsets of H1 and
H2, respectively. Let A : H1 → H2 be a bounded linear operator. The split feasibility problem (SFP for
short) is formulated as follows: finding a point x ∈ H1 such that

x ∈ C and Ax ∈ Q. (1.1)

We use S to denote the solution set of the SFP (1.1). Throughout the whole paper, we always assume
that S is nonempty, that is,

S := C ∩A−1Q ̸= ∅.
The SFP (1.1) was introduced by Censor and Elfving in [9] for solving the phase retrieval problem, which
provides a unified framework for the study of many inverse problems and has important applications
in various areas, such as signal processing, image reconstruction and intensity-modulated radiation
therapy[6, 12, 20, 11, 10]. Many algorithms have been developed to solve the SFP (1.1). One of the
most famous and practical algorithms is the CQ algorithm which was given by Byrne[6, 5], and has
the following iterative form:

xn+1 = PC (xn − βA∗ (I − PQ)Axn) , (1.2)
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where β ≥ 0 is the stepsizes, I is the identity, A∗ is the adjoint of A, while PC and PQ are the metric
projections onto sets C and Q, respectively. The CQ algorithm with different types of stepsizes and
various variants of the CQ algorithm have been extensively explored; see [7, 28, 30, 21, 24, 26, 27]
and references therein. In particular, in Hilbert space, the weak convergence of the CQ algorithm
with constant stepsizes was established in [27] by virtue of the theory of fixed points. López et al.
[21] introduced the CQ algorithm with dynamic stepsizes in Hilbert spaces and established the weak
convergence. The CQ algorithm with dynamic stepsizes has the advantage that it does not require any
prior knowledge about the norm of operator (matrix) A.

In general, the CQ algorithms with dynamic or constant stepsizes might not converge strongly in
Hilbert spaces (see [27, Example 3.7] or [21, Proposition 7]). Wang et al. [25] established the linear
convergence result for the CQ algorithm with the constant or dynamic stepsizes under the bounded
linear regularity property in Hilbert space. On the other hand, the strong convergence together with
an estimate of convergence rate of the relaxed CQ algorithm was established in [29] under Hölderian
error bound property.

Note that Xu [27] also proposed an averaged CQ algorithm in Hilbert space by combining the CQ
algorithm with Mann’s algorithm (see [27, (3.14)]), which is formulated as follows:

xn+1 = (1− αn)xn + αnPC (xn − γA∗ (I − PQ)Axn) ,

where 0 < γ < 2
∥A∥2 and 0 ≤ αn ≤ 4

2+γ∥A∥2 . The weak convergence of the averaged CQ algorithm
was established in [27]. As pointed out in [27], the averaged CQ algorithm might not converge strongly
(see[27, Example 3.7]). In this paper, we continue to study the averaged CQ algorithm with constant
stepsize or dynamic stepsize, which is stated as follows. Throughout the whole paper, we always adopt
the convention that 0

0 = 0.
Algorithm 1.1 Let x0 ∈ C be given. Having x0, x1, · · · , xn, choose a parameter 0 ≤ αn ≤ 1 and

a stepsizes βn > 0, and determine xn+1 by

xn+1 = (1− αn)xn + αnPC (xn − βnA
∗ (I − PQ)Axn) .

Clearly, if αn = 1 for each n, Algorithm 1.1 is reduced to the CQ algorithm (1.2). Consider three
different kinds of stepsizes:

σ1 ≤ βn ≤ 2

∥A∥2
− σ1 with 0 < σ1 <

1

∥A∥2
− σ1; (1.3)

βn =
ρn ∥(I − PQ)Axn∥2

∥A∗ (I − PQ)Axn∥2
with σ2 < ρn < 2− σ2 and 0 < σ2 < 1; (1.4)

lim
n→∞

βn = 0. (1.5)

Wang et al. in [25] established the strong convergence of the CQ algorithm (1.2) with stepsize {βn}
satisfying (1.3) or (1.4), or (1.5) and

∑
n βn = ∞. The weak convergence of the CQ algorithm (1.2) was

studied in [27] (resp. [21]) with stepsize {βn} satisfying (1.3) (resp. (1.4)).
To the best of our knowledge, the study of the strong convergence of the averagedCQ algorithm with

the stepsize {βn} satisfying (1.3) or (1.4) or (1.5), is very limited. Motivated by the works of [25] and
[29], the main purpose of the present paper is to study the strong convergence together with estimates
of convergence rate of Algorithm 1.1. Note that the regularity condition plays a key role in the conver-
gence analysis of many algorithms [1, 4, 13, 19]. A bounded linear regularity property was introduced
by Wang et al. [25] to establish the linear convergence of the CQ algorithm for the SFP(1.1). A natural
extension of the bounded linear regularity property is the bounded linear regularity property with frac-
tional exponent, that is, the Hölderian type bounded linear regularity property. The exponent is closely
related to the estimates of the convergence order of some algorithms; see [3, 15, 14, 16, 17, 18, 22]. In
order to explore the strong convergence together with estimates of convergence order of Algorithm
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1.1, we introduce the bounded linear regularity property with exponent τ (0 < τ ≤ 1). Under the
bounded linear regularity property with exponent τ , the strong convergence together with estimates
of convergence rate of Algorithm 1.1 is obtained with the stepsize {βn} satisfying (1.3) or (1.4) or (1.5),
and

∑
n αnβn = ∞; see Theorem 3.1. The stepsize of Algorithm 1.1 can also switch between (1.3) and

(1.4) for different n. In this case, the strong convergence together with estimates of convergence rate of
Algorithm 1.1 is also provided; see Theorem 3.2. For the case when αn = 1 for each n, Algorithm 1.1 is
reduced to the CQ algorithm (1.2). As applications, the strong convergence together with estimates of
convergence rate of the CQ algorithm is presented under the bounded linear regularity property with
exponent τ (see Corollary 3.3 and Corollary 3.4), which extends the corresponding one in [25, Theo-
rem 2.3]. Finally, numerical experiments are provided to illustrate the effectiveness of the algorithm.
Compared to other known algorithms, our algorithm performs better.

The rest of the paper is organised as follows. Some notation and preliminary results are given in
the next section. Section 3 investigates the strong convergence together with estimates of convergence
rate of Algorithm 1.1 under the bounded linear regularity property with exponent τ . Some numerical
experiments are provided in Section 4.

2. Preliminaries

In what follows, let N denote the set of all positive integers, and let N∗ = N ∪ {0}. Let H be a real
Hilbert space with inner product ⟨·, ·⟩ and its associated norm ∥ · ∥. Given x ∈ H and r > 0, we use
B(x, r) and B(x, r) to denote the open metric ball and the closed metric ball centered at x with radius
r, respectively. Let Ω ⊂ H . The distance function of Ω and the projection onto Ω are denoted by dΩ(·)
and PΩ(·), and are defined by

dΩ(x) := inf
y∈Ω

∥x− y∥ and PΩ(x) := {y ∈ Ω : dΩ(x) = ∥x− y∥} for each x ∈ H,

respectively. Let I be the identity operator on H .
The following lemma is about some useful properties of projection operators, where (i) is taken from

[2, Proposition 4.2(i)], while (ii) follows from [2, Proposition 4.2(ii)] and [2, Corollary 4.10].
Lemma 2.1. Let Ω be a nonempty closed convex subset of H . Then the following two assertions hold:

(i) The operator PΩ is nonexpansive, i.e., ∥PΩx− PΩy∥ ≤ ∥x− y∥ for all x, y ∈ H .
(ii) ⟨(I − PΩ)x− (I − PΩ)y, x− y⟩ ≥ ∥(I − PΩ)x− (I − PΩ)y∥2 for all x, y ∈ H .

The following lemma is taken from [23, Lemma 6], which will be useful in our convergence analysis
of the averaged CQ algorithms.
Lemma 2.2. Let p > 0, and let {αk} and {µk} be nonnegative sequences satisfying:

µk+1 ≤ µk(1− αkµ
p
k), ∀k ∈ N∗.

Then,

uk+1 ≤

(
u−p
0 + p

k∑
i=0

αi

)− 1
p

, ∀k ∈ N∗.

Regularity conditions play a crucial role in the convergence analysis of many algorithms [1, 4, 13, 19].
To establish the linear convergence of the CQ algorithm for the SFP (1.1), Wang et al. [25] introduced
the bounded regularity condition for the SFP (1.1). A natural extension of the bounded regularity con-
dition is the fractional exponent bounded regularity condition, i.e., the Hölderian-type error bound.
The exponent constant is related to the estimation of the convergence rate of some algorithms; see
[3, 15, 14, 16, 17, 18, 22]. To study the strong convergence together with estimates of convergence rate
of Algorithm 1.1, we introduce the following bounded regularity condition with exponent τ . Recall
that S is the solution set of the SFP (1.1).
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Definition 2.3. Let 0 < τ ≤ 1. The SFP (1.1) is said to satisfy the bounded linear regularity property
with exponent τ if for any r > 0 with S ∩ B(0, r) ̸= ∅, there exists γr > 0 such that

γrdS(x) ≤ dτQ(Ax), ∀x ∈ C ∩ B(0, r). (2.1)

In particular, if τ = 1, the SFP (1.1) is said to satisfy the bounded linear regularity property.

3. Convergence of The Averaged CQ Algorithm

This section is devoted to studying the strong convergence together with estimates of convergence
rate of the averaged CQ algorithm. Recall that S = C ∩ A−1Q. Then the following equivalence is
trivial:

[z ∈ S] ⇐⇒ [(I − PQ)Az = 0], ∀z ∈ C. (3.1)
Theorem 3.1 below shows that a sequence generated by Algorithm 1.1 converges strongly under the
bounded linear regularity property with exponent τ . Moreover, estimates of the convergence rate are
also provided.

Theorem 3.1. Let 0 < τ ≤ 1. Suppose that the SFP (1.1) satisfies the bounded linear regularity property
with exponent τ . Let {xn} be a sequence generated by Algorithm 1.1 such that

∑∞
n=0 αnβn = ∞ and {βn}

satisfies (1.3) or (1.4) or (1.5). Then, {xn} converges strongly to a solution x∗ of the SFP (1.1). Furthermore,
there exist δ > 0, 0 < q < 1, and N ∈ N such that for each n > N ,

∥xn − x∗∥ ≤


2dS(xN )q

∑n−1
k=N αkβk , τ = 1,

2

(
d
2(1− 1

τ )
S (xN ) +

(
1
τ − 1

)
δ
∑n−1

k=N αkβk

)− τ
2(1−τ)

, 0 < τ < 1.
(3.2)

Proof. Without loss of generality, we assume xn /∈ S for all n ≥ 0 (otherwise, the algorithm terminates
after finite steps, and the conclusion holds trivially). Then, in view of Algorithm 1.1, we have Axn /∈ Q
for all n ≥ 0. Fix z ∈ S and n ∈ N∗. Let

∇xn := A∗(I − PQ)Axn.

Then,
∥∇xn∥ ≤ ∥A∥dQ(Axn). (3.3)

By Lemma 2.1(ii) and the equivalence (3.1), we have

⟨xn − z,∇xn⟩ = ⟨A(xn − z), (I − PQ)Axn⟩ ≥ ∥(I − PQ)Axn∥2 = d2Q(Axn). (3.4)

Set
yn := PC(xn − βn∇xn), ∀n ∈ N∗.

By Lemma 2.1(i), the operator PC is nonexpansive, so we obtain that

∥yn − z∥2 = ∥PC(xn − βn∇xn)− z∥2

≤ ∥xn − βn∇xn − z∥2

= ∥xn − z∥2 − 2βn⟨xn − z,∇xn⟩+ β2
n∥∇xn∥2.

Combining this with (3.4) yields that

∥yn − z∥2 ≤ ∥xn − z∥2 − βn

(
2− βn

∥∇xn∥2

d2Q(Axn)

)
d2Q(Axn). (3.5)

Next, we show that there exists M ∈ N∗ , such that

βn∥∇xn∥2 ≤ 2d2Q(Axn), ∀n ≥ M. (3.6)
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In fact, if (1.3) or (1.5) holds, then there exist η > 0 and M ∈ N∗ , such that

βn ≤ η <
2

∥A∥2
, ∀n ≥ M. (3.7)

Thus, (3.6) follows from (3.3). For assumption (1.4), it follows from the definition of βn that

βn∥∇xn∥2 = ρnd
2
Q(Axn) < 2d2Q(Axn),

which gives (3.6). Therefore, it follows from (3.5) that

∥yn − z∥ ≤ ∥xn − z∥. (3.8)

To proceed, noting that xn+1 = (1− αn)xn + αnyn, it follows from the convexity of ∥ · ∥ that

∥xn+1 − z∥ = ∥(1− αn)(xn − z) + αn(yn − z)∥
≤ (1− αn)∥xn − z∥+ αn∥yn − z∥.

Thus, by (3.8), one has
∥xn+1 − z∥ ≤ ∥xn − z∥, ∀n ≥ M. (3.9)

Therefore, the sequence {∥xn − z∥} is bounded. Hence, there exists r > 0 such that {z} ∪ {xn} ⊆
C ∩ B(0, r). By assumption that the SFP (1.1) satisfies the bounded linear regularity property with
exponent τ , it follows from Definition 2.3 that there exists γr > 0 such that

γrdS(xn) ≤ dτQ(Axn), ∀n ≥ 0.

This, together with (3.5), implies that

∥yn − z∥2 ≤ ∥xn − z∥2 − γ
2
τ
r βn

(
2− βn

∥∇xn∥2

d2Q(Axn)

)
d

2
τ
S (xn), ∀n ≥ M.

Since z ∈ S is arbitrary, one has

d2S(yn) ≤ d2S(xn)− γ
2
τ
r βn

(
2− βn

∥∇xn∥2

d2Q(Axn)

)
d

2
τ
S (xn), ∀n ≥ M. (3.10)

Note by (3.3) that

2− βn
∥∇xn∥2

d2Q(Axn)
≥ 2− βn∥A∥2.

Then

lim inf
n→+∞

(
2− βn

∥∇xn∥2

d2Q(Axn)

)
> 0. (3.11)

In fact, if assumption (1.3) or (1.5) is satisfied, (3.11) follows from (3.7), while if assumption (1.4) is
satisfied, one has

2− βn
∥∇xn∥2

d2Q(Axn)
= 2− ρn

and so (3.11) follows from (1.4). Hence, there exists N ≥ M such that

δ := inf
n≥N

{
γ

2
τ
r

(
2− βn

∥∇xn∥2

d2Q(Axn)

)}
> 0.

Thus it follows from (3.10) that

d2S(yn) ≤ d2S(xn)− δβnd
2
τ
S (xn), ∀n ≥ N. (3.12)
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Recalling that xn+1 = (1− αn)xn + αnyn, one checks by simple calculation that

∥xn+1 − z∥2 = ∥(1− αn)xn + αnyn − z∥2

= (1− αn)∥xn − z∥2 + αn∥yn − z)∥2 − αn(1− αn)∥xn − yn∥2.

Since αn ∈ [0, 1], it follows that

∥xn+1 − z∥2 ≤ (1− αn)∥xn − z∥2 + αn∥yn − z)∥2

and so
d2S(xn+1) ≤ (1− αn)d

2
S(xn) + αnd

2
S(yn)

because z ∈ S is arbitrary. This, together with (3.12), implies that

d2S(xn+1) ≤ d2S(xn)(1− δβnαnd
2( 1

τ
−1)

S (xn)), ∀n ≥ N. (3.13)

Thus, the following inequality holds for each n ≥ N :

d2S(xn+1) ≤


d2S(xN )

∏n
k=N (1− δαkβk), τ = 1;(

d
2(1− 1

τ
)

S (xN ) +
(
1
τ − 1

)
δ
∑n

k=N αkβk

)− τ
1−τ

, 0 < τ < 1.
(3.14)

In fact, for the case when τ = 1, (3.14) follows directly from (3.13), while for the case when 0 < τ < 1,
(3.14) is seen to hold by applying Lemma 2.2 to {d2S(xn)}, {δαkβk}, 1τ − 1 in place of {µk}, {αk}, p.
Fix n > N . By (3.9), {∥xm − PS(xn)∥}m≥n is monotonically decreasing and so

∥xm − xn∥ ≤ ∥xm − PS(xn)∥+ ∥xn − PS(xn)∥ ≤ 2∥xn − PS(xn)∥ = 2dS(xn). (3.15)

Note that for any 0 ≤ t < 1, ln(1− t) ≤ −t. Therefore,
n∏

k=N

√
1− δαkβk = exp

{
1

2

n∑
k=N

ln(1− δαkβk)

}
≤ q

∑n
k=N αkβk , n ≥ N,

where q := e−
δ
2 . Combining this with (3.15) and (3.14) yields that for all m > n > N ,

∥xm − xn∥ ≤


2dS(xN )q

∑n−1
k=N αkβk , τ = 1,

2

(
d
2(1− 1

τ
)

S (xN ) +
(
1
τ − 1

)
δ
∑n

k=N αkβk

)− τ
2(1−τ)

, 0 < τ < 1.
(3.16)

Since
∑∞

n=1 αkβk = ∞ (due to assumption), {xn} is a Cauchy sequence and so converges to a point
x∗. Hence, (3.2) is seen to hold by letting m → ∞ in (3.16). Furthermore, it follows from (3.14) that
limn→∞ dS(xn) = 0 and so dS(x

∗) = 0. As S is closed, one has x∗ ∈ S, that is, x∗ is a solution of the
SFP (1.1). The proof is complete. □

The following theorem studies the convergence of a sequence generated by Algorithm 1.1 such that
stepsizes are allowed to switch between (1.3) and (1.4) for different n. Under the assumption that {αn}
is bounded from 0, the strong convergence together with estimates of convergence rate of Algorithm 1.1
is obtained. In particular, if the SFP (1.1) satisfies the bounded linear regularity property, the algorithm
converges linearly.

Theorem 3.2. Let 0 < τ ≤ 1. Suppose that the SFP (1.1) satisfies the bounded linear regularity property
with exponent τ . Let {xn} be a sequence generated by Algorithm 1.1 such that βn satisfies (1.3) or (1.4),
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and {αn} ⊆ (α, 1] form some 0 < α ≤ 1. Then {xn} converges strongly to a solution x∗ of the SFP (1.1).
Furthermore, there exists η > 0 such that for all n ∈ N∗,

∥xn − x∗∥ ≤


2(1− η)

1
2
ndS(x0), τ = 1,

2

(
d
2(1− 1

τ
)

S (x0) + η
(
1
τ − 1

)
n

)− τ
2(1−τ)

, 0 < τ < 1.
(3.17)

In particular, if τ = 1, then {xn} converges linearly.

Proof. We claim that

βn ≥ min

{
σ1,

σ2
∥A∥2

}
> 0, ∀n ∈ N∗, (3.18)

and

2− βn
∥∇xn∥2

d2Q(Axn)
≥ min{2− βn∥A∥2, 2− ρn} ≥ min{σ1∥A∥2, σ2} > 0, ∀n ∈ N∗. (3.19)

In fact, for the case when βn satisfies (1.3), βn ≥ σ1, while for the case when βn satisfies (1.4), one has
βn ≥ ρn

∥A∥2 ≥ σ2
∥A∥2 ; hence (3.18) is seen to hold. Additionally, for the case when βn satisfies (1.3), it

follows from (3.3) that

2− βn
∥∇xn∥2

d2Q(Axn)
≥ 2− βn∥A∥2 > σ1∥A∥2,

while for the case when βn satisfies (1.4), one has that

2− βn
∥∇xn∥2

d2Q(Axn)
≥ 2− ρn > σ2;

thus, (3.19) is checked. To proceed, for simplicity, write

η1 := min

{
σ1,

σ2
∥A∥2

}
, η2 := min

{
σ1∥A∥2, σ2

}
.

With similar arguments as done for (3.13), one checks that

d2S(xn+1) ≤ d2S(xn)(1− γ
2
τ
r η2βnαnd

2( 1
τ
−1)

S (xn)), ∀n ∈ N∗. (3.20)
Thus, it follows from (3.18), the definition of η1 and the fact {αn} ⊆ (α, 1] that

d2S(xn+1) ≤ d2S(xn)(1− γ
2
τ
r η2η1αd

2( 1
τ
−1)

S (xn)), ∀n ∈ N∗. (3.21)

Set η := γ
2
τ
r η2η1α. Then, for each n ∈ N∗,

d2S(xn+1) ≤


d2S(x0)(1− η)n+1, τ = 1,(
d
2(1− 1

τ
)

S (x0) +
(
1
τ − 1

)
η(n+ 1)

)− τ
1−τ

, 0 < τ < 1.
(3.22)

Indeed, for the case when τ = 1, (3.22) follows directly from (3.21), while for the case when 0 < τ < 1,
(3.22) holds by applying Lemma 2.2 to {d2S(xn)}, {η},

1
τ −1 in place of {µk}, {αk}, p. Then, with similar

techniques as done for the proof of Theorem 3.1, one checks that the conclusions hold. The proof is
complete. □

For the case when αn = 1 for each n, Algorithm 1.1 is reduced to the CQ algorithm (1.2). Therefore,
Corollaries 3.3 and 3.4 follows directly from Theorems 3.1 and 3.2, respectively, where Corollary 3.3
extends the corresponding one in [25, Theorem 2.3]. Consider the assumption:

lim
n→∞

βn = 0 and
∞∑
n=0

βn = ∞. (3.23)
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Corollary 3.3. Let 0 < τ ≤ 1. Suppose that the SFP (1.1) satisfies the bounded linear regularity property
with exponent τ . Let {xn} be a sequence generated by the CQ algorithm (1.2) such that {βn} satisfies (1.3)
or (1.4) or (3.23). Then, {xn} converges strongly to a solution x∗ of the SFP (1.1). Furthermore, there exist
δ > 0, 0 < q < 1, and N ∈ N such that for each n > N ,

∥xn − x∗∥ ≤


2dS(xN )q

∑n−1
k=N βk , τ = 1;

2

(
d
2(1− 1

τ )
S (xN ) +

(
1
τ − 1

)
δ
∑n−1

k=N βk

)− τ
2(1−τ)

, 0 < τ < 1.

In particular, if τ = 1 and (1.3) or (1.4) holds, then {xn} converges linearly.

Corollary 3.4. Let 0 < τ ≤ 1. Suppose that the SFP (1.1) satisfies the bounded linear regularity property
with exponent τ . Let {xn} be a sequence generated by the CQ algorithm (1.2) such that βn satisfies (1.3)
or (1.4). Then {xn} converges strongly to a solution x∗ of the SFP (1.1). Furthermore, there exists η > 0
such that for all n ∈ N∗,

∥xn − x∗∥ ≤


2(1− η)

1
2
ndS(x0), τ = 1,

2

(
d
2(1− 1

τ
)

S (x0) + η
(
1
τ − 1

)
n

)− τ
2(1−τ)

, 0 < τ < 1.

In particular, if τ = 1, then {xn} converges linearly.

4. Numerical Experiments

In this section, we present some numerical experiments to demonstrate the effectiveness of Algo-
rithm 1.1. All the tests are implemented in R(4.4.3) on a personal computer with AMD R7 7735H, Radeon
Graphics 3.20 GHz and RAM 16.00 GB.

We consider the compressed sensing problem described in [8], which can be approximated by a linear
system of the form b = Ax+ e, where A ∈ Rm×n and b ∈ Rm are known, e ∈ Rm is an arbitrary and
unknown vector of errors, and x ∈ Rn is a variable to be estimated. The sparsity of x is measured by
the ℓ1-norm defined by ∥x∥1 :=

∑n
i=1 |xi|. Let t ≥ 0 be a constant and ε := ∥e∥. Write

C := {x ∈ Rn | ∥x∥1 ≤ t} and Q := {y ∈ Rm | ∥y − b∥2 ≤ ε}. (4.1)
Thus, the compressed sensing problem can be viewed as the SFP (1.1) with H1 = Rn and H2 = Rm.
Then we can check that the SFP (1.1) satisfies the bounded regularity property with exponent 1

2 ; see
Remark 4.1.

Remark 4.1. The SFP (1.1) (with C and Q given by (4.1)) satisfies the bounded linear regularity property
with exponent 1

2 . Indeed, let

c(x) := max
α∈Λ

{αTx− t}, ∀x ∈ Rn,

where Λ := {α ∈ Rn : α = (α1, α2, . . . , αn)
T , αi ∈ {1,−1}, i = 1, 2, . . . , n}, and let

q(y) := ∥y − b∥22 − ε2, ∀y ∈ Rm.

Then the compressed sensing problem can be viewed as the SFP (1)-(2) in [29]. As pointed out in [29,
Remark 4.1], the SFP (1)-(2) satisfies the bounded error bound condition with exponent 1

2 , that is, for
any r > 0 with S ∩B(0, r) ̸= ∅, there exists γ̃r > 0 such that

γ̃rd
2
S(x) ≤ max{[c(x)]+, [q(Ax)]+}, ∀x ∈ B(0, r), (4.2)

where a+ = max{a, 0}. Fix r > 0 with S∩B(0, r) ̸= ∅, and let Mr := sup
x∈C∩B(0,r)

{∥Ax−b∥2+ε}.
Recall that C = {x ∈ Rn | c(x) ≤ 0} and Q = {y ∈ Rm | q(y) ≤ 0}. Then, we have

max{[c(x)]+, [q(Ax)]+} = [q(Ax)]+ ≤ MrdQ(Ax), ∀x ∈ C ∩B(0, r). (4.3)
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In fact, given x ∈ C ∩B(0, r), if q(Ax) ≤ 0, (4.3) is trivial; otherwise, by definition, one has

max{[c(x)]+, [q(Ax)]+} = [q(Ax)]+ = q(Ax) = ∥Ax−b∥22−ε2 ≤ Mr(∥Ax−b∥2−ε) = MrdQ(Ax)

and so (4.3) is checked. Thus, it follows from (4.2) and (4.3) that

γ̃rd
2
S(x) ≤ MrdQ(Ax), ∀x ∈ C ∩B(0, r).

Therefore, (2.1) holds with τ = 1
2 and γr =

√
γ̃r
Mr

.

We carry out four experiments to compare the convergence results between Algorithm 1.1, the re-
laxed CQ algorithm [29] and the RSSEA algorithm [8]. In each experiment, the simulated data are
generated via the standard process of compressive sensing. In detail, we randomly generate an inde-
pendent and identically distributed Gaussian ensembleA ∈ Rm×n satisfyingA⊤A = I . The true sparse
solution x̄ ∈ Rn has s ∈ N nonzero elements drawn independently from a Gaussian distribution, and
t is obtained by t = ∥x̄∥1. The observation vector b is generated via b = Ax̄. The problem size is set as
m = 256 and n = 1024, with initial point x0 = 0 and error ε = 10−6. To evaluate the performance of
algorithms, we compute the total violation by

Total violation := [∥x∥1 − t]+ + [∥Ax− b∥2 − ϵ]+.

The first experiment demonstrates the convergence results of Algorithm 1.1 with fixed stepsizes
βn ≡ 1 and αn ≡ 1

4 . We conduct 100 trials with randomly simulated data to show the convergence
property of Algorithm 1.1. See Figure 1.

Figure 1. Convergence results of Algorithm 1.1 after 100 iterations

The second experiment shows that the convergence results of Algorithm 1.1 with different values of
αn or different stepsizes βn. In Figure 2(a), we choose the fixed stepsize βn ≡ 1 and different values of
αn ∈ {2

3 ,
1
2 ,

1
3 ,

1
4}, while we consider in Figure 2(b) the fixed parameter αn ≡ 1

4 and different stepsize
βn satisfying one of the following conditions:

• Condition (1.3): σ1 = 1
∥A∥2 and βn = 1

∥A∥2 .

• Condition (1.4): σ2 = 1
2 , ρn = 1, and βn =

ρn∥(I−PQ)Axn∥2
∥A∗(I−PQ)Axn∥2 .

• Condition (1.5): βn = 1
n .

• None of the above conditions: βn ≡ 3.
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(a) Different values of αn (b) Different step size βn

Figure 2. Convergence results with different values of αn or step size βn

The last experiment compares the convergence performance of Algorithm 1.1, the relaxed CQ al-
gorithm, and the RSSEA, where we choose αn ≡ 1

20 and βn ≡ 0.9 for Algorithm 1.1, βn ≡ 0.9 for
the relaxed CQ algorithm, and βn ≡ 0.9 for the RSSEA, respectively. Compared to the other two
algorithms, Algorithm 1.1 has a faster convergence speed; see Figure 3.

Figure 3. Convergence performance among different algorithms
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