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Abstract. This study proposes an enhanced version of the feasible value-based modified subgradient
algorithm incorporating two novel placement heuristics for the one-dimensional cutting problem. These
heuristics, the Sequential, Controlled, and Pre-Processed Placement heuristic and the Dynamic Placement
heuristic are integrated within the algorithm to improve its performance. Additionally, the approach is
further refined by combining it with simulated annealing in a hybrid framework. We evaluate the ef-
fectiveness of the proposed approach through computational experiments on benchmark problems. The
results show that the feasible value-based modified subgradient algorithm, which integrates the Sequen-
tial, Controlled, and Pre-Processed Placement heuristic and the Dynamic Placement heuristic, successfully
obtains solutions for all test problems. The algorithm achieves optimal solutions using the Dynamic Place-
ment heuristic and outperforms the Sequential, Controlled, and Pre-Processed Placement heuristic in both
solution quality and computational efficiency. While the Sequential, Controlled, and Pre-Processed Place-
ment heuristic fails to reach optimal solutions, it enables reasonable runtimes. Conversely, the Dynamic
Placement heuristic leads the algorithm to optimal solutions, though it requires longer computation times
with the initial parameter settings. This study shows how adaptable and successful the hybrid method
and placement heuristics are at handling complex optimization problems. It also shows how well they
can solve the one-dimensional cutting problem.

Keywords. One-dimensional cutting problem, Modified subgradient algorithm, Simulated annealing,
Hybrid solution approach.
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1. Introduction

One-dimensional cutting stock problems are encountered in many businesses that deal with one-
dimensional cuts of materials such as pipes, cables, steel shafts, paper, glass, and metal. The stock
materials handled may be one-dimensional materials, such as steel shafts, or multi-dimensional mate-
rials, such as rectangles or prisms, with cuts evaluated over a single dimension (Fig. 1). The problem is
classified as NP-hard in terms of computational complexity. It is challenging to solve this problem due
to many decision variables, data size, and constraints when considering the larger problems.

This paper studies the one-dimensional cutting stock problem (1DCSP) with a new constraint. The
primary purpose of 1DCSP is to minimize the number of used stocks while meeting the demand.

One-dimensional cutting stock problems have been studied with many aspects since 1961 [20] in the
operations research literature. Campello et al. [10] introduced a new heuristic procedure, called the
Residual Recombination Heuristic, to the one-dimensional cutting stock problem. The central aspect
of the heuristic involves recombining residual cutting patterns in different ways. The purpose of the
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Figure 1. One-dimensional cutting examples

study that was proposed by Ayres et al. [1] is to present a new model for integrated lot sizing, one-
dimensional cutting-stock, and two-dimensional cutting-stock problems. This integrated model can be
used to look at the papermaking process as a three-phase process that begins with the manufacture of
jumbos and finishes with the paper sheets we use daily.

Two-dimensional two-stage cutting stock problems are studied in [21, 22]. In these papers, a new
mathematical model is proposed, and a new matheuristic solution method is developed. The new
method is compared to hybrid metaheuristics. The authors examined the production planning of hollow-
core slabs in their work [11]. Two mathematical models were proposed for the problem, which con-
sisted of a one-dimensional multi-period cutting stock problem with innovative aspects regarding the
multiple manufacturing modes that can be used to produce the slabs. Cerqueira proposed a modifi-
cation to the Constructive Greedy Heuristic that involves creating a cutting pattern by sorting items
of pair or odd length in descending order, with priority given to those that appear more frequently in
the problem and cutting from objects in stock with pair or odd length, to minimize the number of cut
objects. Baykasoglu and Ozbel [5] studied the one-dimensional marble plane cutting problem based
on the cutting equipment productivity and effective use of marble blocks. For small-size instances, a
mixed integer linear programming model was developed for solving the present marble plane cutting
problem. For larger size problem instances, a Stochastic Diffusion Search algorithm was developed.
Ravelo et al. [38] considered the one-dimensional cutting stock problem in which the non-used mate-
rial in the cutting patterns may be used in the future if large enough. They gave a heuristic algorithm
and two meta-heuristic approaches to the problem. The authors proposed an integer linear program-
ming model for the one-dimensional cutting stock and scheduling problem with heterogeneous orders
in their work [37]. They also suggested a novel matheuristic algorithm based on a fix-and-optimize
strategy hybridized with a random local search. Wei et al. [47] proposed a new branch-and-price-and-
cut algorithm to solve the one-dimensional bin-packing problem. The exact algorithm proposed in that
paper was based on the classical set-partitioning model for the one-dimensional bin-packing problems
and the subset row inequalities. Burke et al. [9] illustrated how improvements in solution quality could
be achieved by the hybridization of the best-fit heuristic together with simulated annealing and the
bottom-left-fill algorithm. Chen et al. [13] presented a new simulated annealing approach to solving
an integer linear programming formulation of the one-dimensional cutting stock problem. They also
discussed a thorough statistical analysis of the effects of various parameters on the efficiency and accu-
racy of solutions. Li et al. [35] proposed a general particle swarm optimization based on the simulated
annealing algorithm for the solution to the multi-specification one-dimensional cutting stock problem.
Leung et al. [34] presented a two-stage intelligent search algorithm for a two-dimensional strip packing
problem without a guillotine constraint. In the first stage, a heuristic algorithm was proposed. In the
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second stage, a local search and a simulated annealing algorithm were combined to improve solutions
to the problem. In this paper, we studied 1DCSP with a new constraint. This new constraint allows as-
signing items not wanting to be cut together to different stocks. We propose an exact solution method
based on the sharp augmented Lagrangian duality scheme for 1DCSP.

Lagrangian relaxation methods are well-known in the literature. The Lagrangian relaxation strat-
egy is arguably one of the most widely used in large-scale integer programming problems[15]. The
Lagrangian relaxation approach is based on the formulation of a Lagrangian dual problem in which
some chosen constraints are added to an objective function with a possible penalty term that in-
cludes the amount of violation of the constraints and their dual variables [15, 19]. When the clas-
sical Lagrangian function is used, the problem becomes nonconvex (and nonsmooth) due to integer
variable constraints, and thus it is possible to encounter a duality gap. As a result, selecting the ap-
propriate Lagrangian function to ensure a zero duality gap becomes an essential concern in devel-
oping methodologies for nonconvex-constrained optimization problems. In the literature, the sharp
augmented Lagrangian duality scheme was used to construct solution methods for constrained op-
timization problems, where the zero duality gap condition is formed for a wide range of nonconvex
problems [2, 3, 17, 18, 31, 32, 39, 16, 40, 41, 14]. The method suggested in this study is based on an
improved version of Gasimov’s Modified Subgradient (MSG) Algorithm [17]. At each iteration of the
MSG method, an unconstrained subproblem is generated, and the global optimal solution is used to
update dual variables. The MSG algorithm was proved to provide a strongly monotonically growing
sequence of dual values that converges to the standard primal-dual optimal value.

Kasimbeyli et al. introduced the feasible value-based modified subgradient (FMSG) algorithm, an
upgraded version of the MSG algorithm. It does not require a global optimal solution to the subproblem
at each iteration to update dual variables [25]. Many researchers used this method in the literature to
solve various nonconvex optimization problems and develop new solution methods [4, 8, 7, 36, 42, 46,
44].

Because it is unnecessary to (globally) minimize the augmented Lagrangian in the FMSG algorithm
at each iteration, we combine this approach with the simulated annealing (SA) metaheuristic to solve
the proposed model for 1DCSP in this study. In our method, we first construct the sharp augmented
Lagrangian with no length constraints and then use the SA to minimize it. If the produced solution
satisfies the length constraint, the procedure is terminated because the acquired solution is theoretically
optimal. Otherwise, we formulate the constraint using dual variables (Lagrange multipliers) to add it
to the sharp augmented Lagrangian function, which we then minimize using the SA. According to the
FMSG algorithm’s rules, the dual variables are updated at each iteration using the current solution
found by minimizing the updated augmented Lagrangian. This process is repeated until there is no
longer any unsatisfied length, at which point the augmented Lagrangian does not need to be updated.

This study proposed two novel placement heuristics for the one-dimensional cutting problem. These
placement heuristics are integrated into a new hybrid approach combining the FMSG and SA algo-
rithms. The proposed solution approach successfully achieved optimal solutions for all test problems.
Highlights of the study are as follows:

• Two novel placement heuristics were developed for the one-dimensional cutting problem.
• A hybrid solution approach combining the FMSG and SA algorithms was proposed.
• The proposed heuristics achieved optimal solutions for all test problems.
• Computational experiments demonstrated significant time efficiency with the placement heuris-

tics.
• The proposed method outperformed the traditional mathematical model under specific con-

straints.
The following is how the paper is structured. Section 2 describes the definition and the formulation

of the problem under study. Section 3 discusses the solution method for solving the 1DCSP. Section 4
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provides computational results on test instances obtained from the literature. These findings are used
to analyze and assess the solution method’s performance, and Section 5 concludes with a summary of
the work and recommendations for future research.

2. Problem Definition and Mathematical Model

The most common mathematical model [20] used for solving one-dimensional cutting stock problems
is based on creating cutting patterns in the model. All possible combinations are created before the
problem by considering the dimensions of the items requested from a stock. These combinations are
called cutting patterns and are treated as parameters in the model. For the solution of this model,
cutting patterns must be determined in advance. When the demand list increases, the number of cutting
patterns to be created will increase, and it will be challenging to derive each cutting pattern. Hence, it
is complicated to solve, especially in large-sized problems. Therefore, the column generation method
[20] is used for this problem.

Kasimbeyli et al. [25] studied one-dimensional cutting stock problems without using previously
defined cutting patterns. They proposed a mathematical model that does not require a cutting pattern.
Since it approaches the problem’s solution from a different angle, it provides a new perspective. We
give a mathematical model for the one-dimensional cutting stock problem with a new constraint by
referencing this model. We accept every item’s demand as one in this model, and if the item’s demand
is more extensive than one, we multiply each item and consider each one a unique item. The set and
parameters used in the model are defined as follows:
Set and parameters
n be the number of items;
m be the number of stocks;
i = 1, . . . , n set of items;
j = 1, . . . ,m set of stocks;
li be the length of the item i;
L be the length of the stock;
Decision variables

xij =

{
1, if item i is cut stock j,
0, otherwise.

yj =

{
1, if stock j used,
0, otherwise.

Mathematical model

min
m∑
j=1

yj (2.1)

s.t.
m∑
j=1

xij = 1, ∀i, (2.2)

n∑
i=1

lixij ≤ Lyj ,∀j, (2.3)

xij ≤ yj , ∀i,∀j, (2.4)
xij ∈ {0, 1}, yj ∈ {0, 1}, ∀i,∀j. (2.5)
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The objective function (2.1) minimizes the total number of stocks used. Constraint set (2.2) ensures
that the demand for every item has to be met. Constraint set (2.3) imposes the satisfaction of the length
restriction for every stock j. Constraint set (2.4) ensures that if stock j is not used, then no item can be
assigned to that stock. Finally, the constraint set (2.5) imposes that all decision variables are binary.

Although solving this model with the GAMS solver provides effective solutions, it may fail to find
the optimal solution as the problem size increases. Since this is an NP-hard problem, computation
time grows rapidly. To overcome this difficulty, we propose a new hybrid solution method and new
placement heuristics.

The method for solving the problem described in this section is presented in the following section.

3. Method

The solution method for the 1DCSP, as defined in the previous section, is explained in this section. As
previously stated, this method combines the FMSG algorithm, which is based on the sharp augmented
Lagrangian duality scheme, and the SA, which is used to solve subproblems.

Now we will go through why this combination is employed in this work and the benefits of the
hybrid method. Lagrangian relaxation is a well-known method for solving large-scale combinatorial
optimization problems because it allows the creation of a reasonably simple new model by adding
(one or more) constraints to the objective function using Lagrange multipliers [15]. The Lagrangian
relaxation strategy produces a dual problem, and if its optimal value equals the optimal value of the
original (primal) problem, there is no duality gap; otherwise, the difference between the primal and
dual optimal values becomes substantially positive, resulting in the duality gap. When a Lagrangian
relaxation is utilized, one of the primary issues must be addressed is ensuring that the duality gap
vanishes. The zero duality gap criteria, or conditions that guarantee the vanishing of the duality gap,
are highly dependent on the Lagrangian function used to describe the related dual problem. The reason
for this is that finding supporting points of a set (that is, a set of feasible values of the primal problem,
which is the image of the set of feasible solutions under the objective and constraint functions) with
respect to the surfaces generated by a Lagrangian function is simplified when solving a dual problem.
Because the classical Lagrangian function generates hyperplanes, which can only be used to support
convex sets, the accompanying duality scheme may encounter a duality gap when the primal problem
is not convex [39, 6]. Because the sharp augmented Lagrangian function produces conical surfaces, it
can be utilized as a supporting surface for nonconvex sets, resulting in a duality scheme in which the
zero duality gap conditions for a wide range of nonconvex problems are demonstrated (see, e.g.[39, 14]).
It should be noted that conical supporting surfaces have been used in the literature to examine a wide
range of nonconvex optimization problems and establish optimality conditions (see, e.g.[23, 24, 26, 27,
28, 29, 30]).

All of the theorem conditions ensuring the zero duality gap, recently demonstrated in ([14], Theorem
7), are satisfied for the 1DCSP since the objective and constraint functions are all linear and the decision
variables are confined to be binary (0 or 1). This theorem enables us to build a solution strategy for the
1DCSP, a nonconvex and nonsmooth problem, based on a sharp augmented Lagrangian duality scheme
(because of integer variables used in the mathematical model). This method is a hybrid subgradient
method since it combines the FMSG algorithm [32] and the SA metaheuristic. In this hybrid method,
dual variables are updated using the stepsize rule of the FMSG algorithm [4], and subproblems are
solved using the SA algorithm at each iteration. A sharp augmented Lagrangian function is used to
handle the length limitations. The other constraints are addressed using the SA algorithm because they
are no longer challenging to solve using this method. The following are some of the advantages of the
hybrid method:

• It is quite simple to put in place;
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• The FMSG algorithm does not require global minimums of the subproblems that must be solved
at each iteration and instead converges to a global minimum of the original problem (see ([32],
Theorems 3.4, 3.6, 3.7) and ([4], Theorems 4.1, 4.2)).

Following a brief description of the sharp augmented Lagrangian and the Simulated Annealing meta-
heuristic in the following subsections, we discuss the developed hybrid algorithm in Section 3.3 in detail.

3.1. Sharp augmented lagrangian. In this part, we briefly review several relevant definitions for the
primal problem, which is a general constrained optimization problem:

(P ) minimize f(x) subject to x ∈ X, (3.1)

where X = {x : g(x) = 0} is a compact set of feasible solutions and functions f : Rn → R, g : Rn →
Rp are continuous. Denote by R+ the set of non-negative numbers. The sharp augmented Lagrangian
L : Rn × Rp × R+ → R associated with (3.7) is defined as follows:

L(x, u, c) = f(x) + c∥g(x)∥ − ⟨u, g(x)⟩, (3.2)
where x ∈ Rn, u ∈ Rp, c ∈ R+, ∥g(x)∥ denotes the Euclidean norm of the constraint function

g(x) = (g1(x), ..., gp(x)) and ⟨u, g(x)⟩ =
∑n

i=1 uifi(x). The solution set of problem (3.7) is denoted
by Sol(P ). Typically, an element of Sol(P ) is denoted by x̄. The dual function H : Rp × R+ → R is
defined as:

H(u, c) = min
x∈X

[f(x) + c∥g(x)∥ − ⟨u, g(x)⟩], (3.3)

where u and c are dual variables (or Lagrange multipliers). Then the dual problem to (3.7) is given
by

(P∗) maximize H(u, c) subject to u ∈ Rp, c ∈ R+. (3.4)

3.2. Simulated annealing. Simulated annealing (SA) was proposed by S. Kirkpatrick et al. [33] and V.
Cerny [12] for various optimization problems. In the 1980s, SA was used extensively as an efficient and
straightforward method for solving combinatorial optimization problems. SA is based on the principle
of obtaining a strong crystal structure by first heating the material and then cooling it slowly. The
strength of the structure depends on the rate and time of cooling of the metal. If the initial temperature
is not high enough or a rapid cooling schedule is applied, defects occur in the material. In this case, the
cooled solid cannot reach fundamental equilibrium at every temperature level. Strong crystals can be
obtained by careful and slow cooling [45].

The algorithm examines different candidate solutions, starting from a determined initial solution
and progressing through many steps. At each step, a neighbor solution is created specifically for the
problem. Neighboring solutions (f(s)) that improve the objective function value are always accepted.
The chance of choosing non-healing neighbor solutions (f(s′)) depends on the current temperature
(T ) of the algorithm and the change in the objective function(∆E). Accepting candidate solutions that
do not improve the objective function prevents the algorithm from getting stuck in the local best. As
the current temperature decreases as the algorithm progresses, the probability of accepting candidate
solutions that do not improve the objective function decreases. The probability of acceptance of bad
candidate solutions is calculated using the Boltzmann distribution:

P (∆E, T ) = e−
f(s′)−f(s)

T . (3.5)
By making a certain number of changes at each temperature level, candidate solutions are created
and examined. When a certain number of candidate solutions are examined, the equilibrium state is
reached, and the temperature is gradually reduced. The temperature reduction is made according to a
specific cooling schedule [45].
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In the SA algorithm, we represent candidate solutions for 1DCSP by a permutation of whole items
as an array that depicts the order in which the selected placement heuristic assigns items to stocks.

The algorithm starts from an initial solution. Different approaches can create the initial solution. The
most common initial solution approaches are random and descending order by length. In this paper,
these two initial solution creations are used to compare.

The SA algorithm examines different candidate solutions to find the final result. Every candidate
solution created at every iteration is called a neighbor solution. In this paper, neighbor solutions are
created using a 2-opt exchange operator. With the 2-opt exchange operator, we choose two items
randomly from the array of items and then exchange their positions. We send each candidate solution to
the selected placement heuristic. With the placement heuristic, the objective function value, the number
of used stock, is calculated, and the final item placement, a cutting pattern, is obtained. Proposed
placement heuristics are described in section 3.3.

SA algorithm is explained in Algorithm 1 given below.

Algorithm 1 Algorithm of simulated annealing
Require: Cooling schedule (g(T )), Initial temperature (Tmax)

1: Create an initial solution (s0)
Ensure: T = Tmax s = s0

2: while T ̸= Tstop do
3: while i < N do
4: Create candidate solution (s′) of s
5: ∆E ⇐ f(s)− f(s′),
6: if ∆E ≤ 0 then
7: s ⇐ s′

8: else
9: if P (∆E, T ) < ρ then

10: s ⇐ s′

11: end if
12: end if
13: i ⇐ i+ 1
14: end while
15: i ⇐ 0
16: T ⇐ g(T )
17: end while
18: Feasible solution s is found

The SA metaheuristic is effective in a variety of well-known combinatorial optimization problems.
The majority of problems for which SA metaheuristics have proven effective fall into the following
categories: cutting stock, vehicle routing, and assignment problems [43].

3.3. Placement heuristics. Depending on the metaheuristic utilized and the problem being addressed,
there are a variety of placement heuristics in the literature. Placement heuristics established to reflect
the characteristics of the problem and specialized under the restrictions of the problem play a vital role
in the solution’s success. The suggested 1DCSP placement heuristics allow candidate solutions to be
assigned to stock based on specified rules. Candidate solutions are then turned into meaningful cutting
patterns that show the items’ beginning and finishing places and their sequences.

In this paper, we propose two different placement heuristics for 1DCSP and compare the ability to
obtain solutions. The following are the placement heuristics we use:
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• Sequential, controlled, and pre-processed placement heuristic
• Dynamic placement heuristic

3.3.1. Sequential, controlled, and pre-processed placement heuristic. The sequential, controlled, and pre-
processed placement (SCPP) heuristic is based on creating doubles of items with zero trim loss. Because
of this pre-processing, the number of items in the sequence reduces by pre-assigning zero-trim loss
items to stocks, thereby reducing the sequence. After pre-processing, the remaining items are consid-
ered in the given order. Items are assigned to the stock by considering the given length. If an item does
not fit the stock, the first item that does fit the remaining length is assigned. SSCP heuristic is described
in Algorithm 2 given below.

Algorithm 2 Algorithm of sequential, controlled, and pre-processed placement heuristic
Step 1 The doubles of items with zero trim loss are assigned to the stocks by starting the first item
in the items’ sequence. These doubles construct a cutting pattern. The remaining items at the end of
Step 1 transferred to Step 2.
Step 2We choose the first unassigned item in the sequence, place it in stock and update the remaining
length. Repeat Step 2 until an item does not fit the given remaining length.
Step 3 If an item does fit the given remaining length, it is placed in the stock. Otherwise, start a new
stock and repeat Step 2 and Step 3.
Step 4 If there is no item left in the sequence unassigned, terminate the algorithm.

3.3.2. Dynamic placement heuristic. Based on the idea of sequential, controlled, and pre-processed
placement heuristics explained in the previous section, we propose a dynamic placement heuristic (DP).
When considering a sequence of items, it is essential to create zero-trim item combinations first to pre-
process the sequence to improve the quality of the solutions. Based on this logic, combinations with
zero trim can be determined by testing combinations 2 and 3. Then the remaining items are placed in
sequence and with a controlled placement heuristic.

The main challenge here is the computational intensity and time loss of examining all combinations
in problems where the number of items increases. In addition, when it is considered that this process
should be applied to all neighboring solutions at all steps, difficulties in implementation can be seen.
To overcome this difficulty, it has been determined that clustering the items within themselves will
significantly reduce the processing intensity. These sets will be created according to the dimensions
of the items. The basic logic is that items within a defined set can be cut from the stock at the same
amount. The number of sets (Setnumber) is calculated by the following formulation, while L is the
length of the stock and Lmin is the length of the smallest item:

Setn = ⌊ L

Lmin
⌋ (3.6)

Note that the number of items in each set depends on the problem data. There may be zero items in
some sets. Consider the following problem data in Table 1. The given items are to be cut from a stock
length of 150 units.

Table 1. Item data for the example
item id 1 2 3 4 5 6 7 8
length 26 83 67 100 91 30 77 88
item id 9 10 11 12 13 14 15
length 71 23 81 25 60 48 50
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The sets defined for the items given in Table 1 are given in Table 2.

Table 2. Sets for the example
Sets Items
Set1 2 4 5 7 8 11
Set2 3 9 13
Set3 14 15
Set4
Set5 1 6
Set6 10 12

According to Table 2, the items in Set1 can be cut from the stock length of 150 units one time, and
the items in the sets can be cut from the same stock corresponding time. We use these sets to create
combinations of two or three items. As an example, two items from Set1 can not be cut together, so
we do not have to process these items for a combination of two. Considering the defined sets, the DP
heuristic is described in Algorithm 3 given below.

Algorithm 3 Dynamic placement heuristic
Step 1 The doubles of items with zero trim loss are assigned to the stocks by starting the first unas-
signed item in the items’ sequence. This combination of two construct a cutting pattern. The remain-
ing items at the end of Step 1 transferred to Step 2.
Step 2 The triples of items with zero trim loss are assigned to the stocks by starting the first unas-
signed item in the items’ sequence. This combination of three construct a cutting pattern. The re-
maining items at the end of Step 2 transferred to Step 3.
Step 3 We choose the first unassigned item in the sequence, place it in stock, and update the remain-
ing length. Repeat Step 3 until an item does not fit the given remaining length.
Step 4 If an item does fit the given remaining length, it is placed in the stock. Otherwise, start a new
stock and repeat Step 3 and Step 4.
Step 5 If there is no item left in the sequence unassigned, terminate the algorithm.

3.4. Hybrid subgradient (HSG) algorithm. This section will go through the HSG algorithm, which
was created by merging the FMSG and SA algorithms and taking into account length limits in a unique
method.

SA is a general-purpose metaheuristic algorithm that overcomes related constraints and solves such
problems with minimal processing effort. Because the FMSG approach allows for local optimums (dis-
covered by the SA algorithm) in updating stepsize parameters, length capacity limits are easily ad-
dressed by the HSG algorithm. The approach checks for any unsatisfied length constraints after ob-
taining a solution to the currently stated problem. If the resulting cutting pattern satisfies length con-
straints, the program ends. Otherwise, the sharp augmented Lagrangian function is given a length
constraint.

We will define the objective, constraint functions, and the set of possible solutions over which the
Lagrangian will be minimized by using the following notations.

minimize f(x) subject to x ∈ X, (3.7)

where f(x) =
∑m

j=1 yj , g1i (x) =
∑m

j=1 xij − 1,∀i,, g2ij(x) = xij − yj , ∀i,∀j, and

X = {x = (xij , yj) : g
1
i = 0, g2ij ≤ 0, (xij , yj) ∈ {0, 1}, ∀i, ∀j}. (3.8)
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We define the length constraint (2.3) as the following form to add the sharp augmented Lagrangian
function:

g3j (x, y) = max
j

{
n∑

i=1

lixij − Lyj , 0}∀j.

We describe the HSG algorithm below, where H̄ denotes the optimal value of the (primal) problem.

Algorithm 4 The HSG algorithm
Step 0 (Initialization) Choose the tolerances ε1, ε2 > 0, numbers α > 0, 0 < δ < 2, ∆ > 0. Set
T = 0, p = 0, q = 0 and go to Step 1.
Step 1 Set m := 0, k := 0, choose the initial Lagrange multipliers (umk , cmk ) ∈ RT ×R+, the number
Hm and define the augmented Lagrangian function as follows:

L(x, umk , cmk ) = f(x) + cmk ∥g3(x)∥ − ⟨umk , g3(x)⟩, (3.9)
and go to Step 2.
Step 2 For the given (umk , cmk ) and Hm, solve the following problem by applying the SA algorithm:

minimize L(x, umk , cmk ) subject to x ∈ X, L(x, umk , cmk ) ≤ Hm. (3.10)
Constraints (2.2), (2.4), (2.5) are solved by the SA algorithm (see the definition of the set X defined
in (3.8)), where length constraints described in (2.3) are handled in the sharp augmented Lagrangian
function, as previously mentioned. SA algorithm is called for a specific number of times to search for
a solution to (3.10). If after this specific number of times, a solution can not be found, it is assumed
that a solution to (3.10) does not exist, (which means that Hm < H̄). If so, go to Step 5. Otherwise,
let xmk be a solution to (3.10). If ∥g3(xmk )∥ ≤ ε2 then go to Step 4, otherwise go to Step 3.
Step 3 Update dual variables as follows:

umk+1 := umk − αskg
3(xmk ), (3.11)

cmk+1 := cmk + (1 + α)sk∥g3(xmk )∥, (3.12)
where sk is a positive stepsize parameter defined as follows:

0 < sk =
δα(Hm − L(x, umk , cmk ))

[α2 + (1 + α)2]∥g3(xmk )∥2
. (3.13)

Set k := k + 1, and go to Step 2.
Step 4 Let xmk be a solution to (3.10) with ∥g3(xmk )∥≤ ε2. Set q = q + 1,m := m + 1. If p = 0

then ∆m+1 = ∆m, otherwise ∆m+1 = 1
2∆

m. Set Hm+1 := min{f(xmk , umk , cmk ), Hm −∆m+1}. If
∆m+1 < ε1 then go to Step 6, otherwise go to Step 2.
Step 5 If the solution to the problem (3.10) does not exist, then set p = p+ 1,m := m+ 1. If q = 0
then ∆m+1 = ∆m, otherwise ∆m+1 = 1

2∆
m. Set Hm+1 := Hm +∆m+1 and go to Step 2.

Step 6 xmk is a solution to (3.10) with ∥g3(xmk )∥≤ ε2 and ∆m+1 < ε1.

The selection of the H0 value is critical to the problem’s solution. If this value is set, too high, feasible
but not optimal solutions will be obtained. Choosing a value close to the optimal solution may give the
algorithm a performance boost.

There are two loops in the HSG algorithm. The solution xmk , which is determined for the smallest
interval containing the primal-dual optimal value and which satisfies all the length restrictions, can be
regarded as an outer loop. If this is possible, the algorithm ends. If not, the augmented Lagrangian
function is modified by adding length constraints to it and applying updated Lagrange multipliers, and
the method then proceeds to the inner loop, which consists of Steps 2 through 5.

Figure 2 depicts a quick overview of the method.
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Figure 2. HSG algorithm flow chart

4. Computational Results

A series of computational experiments were conducted to verify the efficiency of the proposed so-
lution method. To compare the performance of the HSG algorithm, all test problems are solved by
the mathematical model given in Section 2 and the HSG algorithm. We use two different placement
heuristics in the HSG algorithm described in Section 3.3.

The numerical experiments have been carried out on a PC with an Apple MacBook Pro with a 2.8
GHz IntelCore i7 processor and 4 GB RAM. HSG algorithm is implemented in Python 3.9 which is
executed on PyCharm. We used GAMS software version 23.3 to solve the test problems with the given
mathematical model. We set the CPU time limit to 2000 seconds when solving the problem with the
GAMS software.

Algorithms are tested on 20 test problems given in OR-LİB with the label ”binpack1”. Each problem
has 120 items, which will be cut from stocks with a length of 150. Parameters used in the HSG algorithm
and within SA are given in Table 3.

Tmax g(T ) N ρ

100 0.8 10 0.25
H0 ε1 ε2 δ α θ

1000 0 0.001 10 0.5 0.5
Table 3. Parameters used in HSG

The comparison of experimental results obtained by the HSG algorithms and mathematical model is
presented in Table 4. The Z∗ column shows the optimal solutions found in the literature for the given
test problems. Column zm and column Tm show the solutions obtained with the mathematical model
and the time it took to obtain these solutions.
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Columns zsscpHSG and T sscp
HSG represent the solutions obtained using the ”Sequential, Controlled, and

Pre-Processed Placement Heuristic,” along with the times required to obtain these solutions. Similarly,
columns zdpHSG and T dp

HSG show the solutions and times obtained using the ”Dynamic Placement Heuris-
tic” within the HSG algorithm. Additional parameters used in the HSG algorithm are provided in Table
3.

ID Z∗ zm Tm zsscpHSG T sscp
HSG zdpHSG T dp

HSG

U12000 48 48 295.52 49 196.2 48 797.7
U12001 49 49 263.35 50 155.6 49 437.0
U12002 46 46 210.43 47 168.8 46 740.8
U12003 49 50 2000.36 51 166.9 49 1002.9
U12004 50 50 645.50 51 178.4 50 1199.4
U12005 48 49 2000.24 49 170.9 48 875.1
U12006 48 49 2000.22 49 166.0 48 797.7
U12007 49 50 2000.23 50 156.2 49 916.9
U12008 51 53 2000.13 52 257.9 51 1078.5
U12009 46 47 2000.32 48 188.1 46 782.6
U12010 52 53 2000.06 53 152.7 52 1723.1
U12011 49 49 1651.96 50 171.2 49 1265.2
U12012 48 49 2000.05 49 148.7 48 941.8
U12013 49 49 156.56 50 165.7 49 806.3
U12014 50 51 2000.12 51 208.5 50 1197.6
U12015 48 49 2000.08 49 191.2 48 1344.6
U12016 52 52 171.64 53 148.3 52 1363.8
U12017 52 53 2000.06 54 161.7 52 1403.7
U12018 49 49 200.59 50 152.1 49 1240.0
U12019 50 50 2000.08 51 194.1 50 1244.2

Table 4. Computational results

As seen in the table, the optimal solution was obtained for 9 out of 20 problems using the math-
ematical model. However, for the remaining problems, although the upper time limit was reached,
the optimal solution could not be achieved. Using the HSG algorithm with SSCP, the optimal solution
could not be achieved for any of the problems. However, the solution time remained under 250 seconds,
demonstrating a reasonable use of time. Finally, using the HSG algorithm with the dynamic placement
heuristic (DP), the optimal solution was achieved for all problems. However, it was observed that the
solution time reached up to 1400 seconds for some problems. Therefore, a new experiment was con-
ducted by modifying the parameters of the HSG algorithm to investigate how to achieve an optimal
solution with the exact placement heuristic in a shorter time. The new parameters used in the HSG
algorithm are given in Table 5.

Tmax g(T ) N ρ

100 0.8 10 0.25
H0 ε1 ε2 δ α θ

50 0 0.1 10 0.5 0.5
Table 5. Parameters used in HSG
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The solutions obtained from these calculations, along with their corresponding solution times, are
presented in Table 6.

ID Z∗ zm Tm zsscpHSG T sscp
HSG zdpHSG T dp

HSG

U12000 48 48 295.52 49 196.2 48 190.102
U12001 49 49 263.35 50 155.6 49 124.42
U12002 46 46 210.43 47 168.8 46 95.52
U12003 49 50 2000.36 51 166.9 49 139.18
U12004 50 50 645.50 51 178.4 50 175.71
U12005 48 49 2000.24 49 170.9 48 111.08
U12006 48 49 2000.22 49 166.0 48 95.53
U12007 49 50 2000.23 50 156.2 49 144.27
U12008 51 53 2000.13 52 257.9 51 153.65
U12009 46 47 2000.32 48 188.1 46 116.53
U12010 52 53 2000.06 53 152.7 52 212.8
U12011 49 49 1651.96 50 171.2 49 128.53
U12012 48 49 2000.05 49 148.7 48 83.67
U12013 49 49 156.56 50 165.7 49 67.12
U12014 50 51 2000.12 51 208.5 50 113.76
U12015 48 49 2000.08 49 191.2 48 132.92
U12016 52 52 171.64 53 148.3 52 143.02
U12017 52 53 2000.06 54 161.7 52 234.7
U12018 49 49 200.59 50 152.1 49 129.67
U12019 50 50 2000.08 51 194.1 50 130.31

Table 6. Computational results

As shown in Table 6, the optimal solution for all problems was achieved in significantly less time
with the newly determined parameters. Achieving the optimal solution for all problems in a shorter
time compared to SSCP highlights the effectiveness of the developed placement heuristic.

5. Conclusion

The computational experiments conducted in this study demonstrate the efficiency and effectiveness
of the proposed HSG algorithm in solving the bin packing problem. Using the dynamic placement
heuristic (DP), the optimal solution was achieved for all test problems, showing its superiority over
the sequential, controlled, and pre-processed placement heuristic (SSCP). While the SSCP heuristic
could not reach the optimal solution for any problem, it demonstrated a reasonable time efficiency
with solution times consistently under 250 seconds.

In contrast, the DP heuristic consistently achieved the optimal solution across all test cases. However,
under the initial parameter settings, the solution time exceeded 1400 seconds for some problems. We
fine-tuned the parameters of the HSG algorithm and obtained a significant reduction in computation
time while maintaining the ability to reach optimal solutions. The updated parameters enabled the DP
heuristic to achieve the optimal solution for all problems in less time, further highlighting its efficiency
and scalability.

These findings highlight the importance of parameter optimization and placement heuristic selec-
tion in obtaining high-quality solutions and computing efficiency. The developed placement heuristics,
particularly the DP heuristic, demonstrate strong potential for practical applications in large-scale opti-
mization problems where time efficiency and solution accuracy are critical. Future work could explore
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extending this approach to other combinatorial optimization problems or adapting the algorithm for
real-world industrial use cases.

Future studies could focus on extending the proposed HSG algorithm to other combinatorial op-
timization problems, such as vehicle routing or job scheduling, where efficient packing or allocation
is required. Also, searching hybrid approaches that combine the strengths of the dynamic placement
heuristic (DP) with other metaheuristic methods, such as genetic algorithms or particle swarm opti-
mization, could further enhance performance. Lastly, integrating machine learning techniques to adjust
parameters during runtime dynamically could improve adaptability and efficiency in diverse problem
instances.
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