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Abstract. This paper focuses on optimality conditions for C1,1 vector optimization problems with in-
equality constraints. By employing the limiting second-order subdifferential and the second-order tangent
set, we introduce a new type of second-order constraint qualification in the sense of Abadie. Then we es-
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1. Introduction

The investigation of optimality conditions is one of the most attractive topics in optimization the-
ory. It is well-known that, without the convexity, first-order optimality conditions (Fritz John/Karush–
Kuhn–Tucker type) are usually not sufficient ones. This motivated mathematicians to study second-
order optimality conditions. The second-order optimality conditions complement first-order ones in
eliminating non-optimal solutions. For C2 (twice continuously differentiable) constrained optimization
problems, it is well-known that the positive definiteness of the Hessian of the associated Lagrangian
function is a sufficient condition for the optimality; see, for example, [3]. For non-C2 problems, to obtain
the second-order optimality conditions, many different kinds of generalized second-order derivatives
have been proposed; see, for example, [4, 8–12, 14, 17, 19, 21–31, 33, 34].

In the literature, there are two generally independent approaches dealing with generalized second-
order differentiations. The first one is based on the Taylor expansion, while the other is defined by
induction, i.e., the second-order derivative of a real-valued function is the derivative of its first-order
one. In [19], Mordukhovich proposed a new approach to construct second-order subdifferentials of
extended-real-valued functions as the coderivative of the subgradient mapping. The second-order sub-
differential theory, as introduced by Mordukhovich, and its modification were successfully employed
in the study of a broad spectrum of other important issues in variational analysis and its applications;
see, for example, [16,19–21,30–32]. We refer the reader to the recent book by Mordukhovich [31]. This
comprehensive work, consisting of nine chapters, provides a valuable reference for recent researchers
in this area.

In [12], Huy and Tuyen introduced the concept of second-order symmetric subdifferential and de-
veloped its calculus rules. By using the second-order symmetric subdifferential, the second-order tan-
gent set and the asymptotic second-order tangent cone, they established some second-order necessary
and sufficient optimality conditions for optimization problems with geometric constraints. As shown
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in [12], the second-order symmetric subdifferential may be strictly smaller than the Clarke subdifferen-
tial, and has some nice properties. In particular, every C1,1 function has Taylor expansion in terms of its
second-order symmetric subdifferential. Thereafter, in [13,35], the authors used second-order symmet-
ric subdifferentials to derive second-order optimality conditions of Karush–Kuhn–Tucker (KKT) type
for C1,1 vector optimization problems with inequality constraints. Then, in [6], Feng and Li introduced
a Taylor formula in the form of inequality for limiting second-order subdifferentials and obtained some
second-order Fritz John type optimality conditions for C1,1 scalar optimization problems with inequal-
ity constraints. Recently, An and Tuyen [2] derived some optimality conditions for C1,1 optimization
problems subject to inequality and equality constraints by employing the concept of limiting (Mor-
dukhovich) second-order subdifferentials to the Lagrangian function associated with the considered
problem.

The aim of this work to extend and improve results in [6, 13, 35] to C1,1 vector optimizations prob-
lems. To do this, we first introduce a new type of second-order constraint qualification in the sense of
Abadie and some sufficient conditions for this constraint qualification. Under the Abadie second-order
constraint qualification, we obtain second-order KKT necessary optimality conditions for efficiency of
the considered problem. We also derive a second-order sufficient optimality condition of strong KKT-
type for local efficient solutions.

The rest of this paper is organized as follows. In Section 2, we recall some definitions and prelimi-
nary results from variational analysis and generalized differentiation. Section 3 presents main results.
Section 4 draws some conclusions.

2. Preliminaries

Throughout the paper, the considered spaces are finite-dimensional Euclidean with the inner product
and the norm being denoted by ⟨·, ·⟩ and by ∥ · ∥, respectively.

For a, b ∈ Rm, by a ≦ b, we mean al ≤ bl for all l = 1, . . . ,m; by a ≤ b, we mean a ≦ b and a ̸= b;
and by a < b, we mean al < bl for all l = 1, . . . ,m.

Let Ω be a nonempty subset in Rn. The closure and convex hull of Ω are denoted, respectively, by clΩ
and conv Ω. The unit sphere in Rn is denoted by Sn. We denote the nonnegative orthant in Rn by Rn

+.
Let F : Rn ⇒ Rm be a set-valued mapping. The domain and the graph of F are given, respectively,

by
domF = {x ∈ Rn : F (x) ̸= ∅}

and
gphF = {(x, y) ∈ Rn × Rm : y ∈ F (x)}.

The set-valued mapping F is called proper if domF ̸= ∅. The Painlevé-Kuratowski outer/upper limit of
F at x̄ is defined by

Lim sup
x→x̄

F (x) :=

{
y ∈ Rm : ∃xk → x̄, yk → y with yk ∈ F (xk), ∀k = 1, 2, . . . .

}
.

Definition 2.1. Let Ω be a nonempty subset in Rn, x̄ ∈ Ω, and u ∈ Rn.
(i) The tangent cone to Ω at x̄ ∈ Ω is defined by

T (Ω; x̄) := {d ∈ Rn : ∃tk ↓ 0, ∃dk → d, x̄+ tkd
k ∈ Ω, ∀k ∈ N}.

(ii) The second-order tangent set to Ω at x̄ with respect to the direction u is defined by

T 2(Ω; x̄, u) :=

{
v ∈ Rn : ∃tk ↓ 0,∃vk → v, x̄+ tku+

1

2
t2kv

k ∈ Ω, ∀k ∈ N
}
.
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By definition, T ( · ; x̄) and T 2( · ; x̄, u) are isotone, i.e., if Ω1 ⊂ Ω2, then

T (Ω1; x̄) ⊂ T (Ω2; x̄) and T 2(Ω1; x̄, u) ⊂ T 2(Ω2; x̄, u).

It is well-known that T (Ω; x̄) is a nonempty closed cone, T 2(Ω; x̄, u) is closed, and T 2(Ω; x̄, u) = ∅ if
u /∈ T (Ω; x̄). We refer the reader to [7,15] and the bibliography therein for other interesting properties
of the above tangent sets.

Definition 2.2 (see [21]). Let Ω be a nonempty subset of Rn and x̄ ∈ Ω. The Fréchet/regular normal
cone to Ω at x̄ is defined by

N̂(x̄,Ω) =
{
v ∈ Rn : lim sup

x
Ω−→x̄

⟨v, x− x̄⟩
∥x− x̄∥

≤ 0
}
,

where x Ω−→ x̄ means that x → x̄ and x ∈ Ω. The limiting/Mordukhovich normal cone to Ω at x̄ is given
by

N(x̄,Ω) = Lim sup

x
Ω−→x̄

N̂(x,Ω).

We put N̂(x̄,Ω) = N(x̄,Ω) := ∅ if x̄ ̸∈ Ω.

By definition, one has N̂(x̄,Ω) ⊂ N(x̄,Ω) and when Ω is convex, then the regular normals to Ω
at x̄ coincides with the limiting normal cone and both constructions reduce to the normal cone in the
sense of convex analysis, i.e.,

N̂(x̄,Ω) = N(x̄,Ω) := {v ∈ Rn : ⟨v, x− x̄⟩ ≤ 0, ∀x ∈ Ω}.

Consider an extended-real-valued function φ : Rn → R := R∪{+∞}. The epigraph, hypergraph and
domain of φ are denoted, respectively, by

epi φ := {(x, α) ∈ Rn × R : α ≥ φ(x)},
hypo φ := {(x, α) ∈ Rn × R : α ≤ φ(x)},
dom φ := {x ∈ Rn : φ(x) < +∞}.

The function φ is called proper if domφ is nonempty.

Definition 2.3 (see [21]). Given x̄ ∈ dom φ. The sets

∂φ(x̄) := {x∗ ∈ Rn : (x∗,−1) ∈ N((x̄, φ(x̄)); epi φ)}
∂+φ(x̄) := {x∗ ∈ Rn : (−x∗, 1) ∈ N((x̄, φ(x̄)); hypo φ)},
∂Sφ(x̄) := ∂φ(x̄) ∪ ∂+φ(x̄),

∂Cφ(x̄) := cl conv ∂φ(x̄)

are called the limiting/Mordukhovich subdifferential, the upper subdifferential, the symmetric subdiffer-
ential, and the Clarke subdifferential of φ at x̄, respectively. If x̄ /∈ domφ, then we put

∂φ(x̄) = ∂+φ(x̄) = ∂Sφ(x̄) = ∂Cφ(x̄) := ∅.

In contrast with the Clarke subdifferential, the limiting (symmetric) subdifferential may be noncon-
vex and, by definition, it is clear that

∂φ(x̄) ⊆ ∂Sφ(x̄) ⊆ ∂Cφ(x̄), (2.1)

and both inclusions may be strict; see [21, pp. 92–93].
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Definition 2.4 (see [30, Definition 1.11]). Let F : Rn ⇒ Rm be a set-valued mapping and (x̄, ȳ) ∈
gphF . The limiting/Mordukhovich coderivative of F at (x̄, ȳ) is a multifunction D∗F (x̄, ȳ) : Rm ⇒ Rn

with the values
D∗F (x̄, ȳ)(u) := {v ∈ Rn : (v,−u) ∈ N ((x̄, ȳ), gph F )} , u ∈ Rm. (2.2)

If (x̄, ȳ) /∈ gphF , we put D∗F (x̄, ȳ)(u) := ∅ for any u ∈ Rm. When F is single-valued at x̄ with
ȳ = F (x̄), the symbol ȳ in the notation D∗F (x̄, ȳ) will be omitted.

If the limiting normal cone in (2.2) is replaced by Clarke normal one, then the set
D∗

CF (x̄, ȳ)(u) := {v ∈ Rn : (v,−u) ∈ NC ((x̄, ȳ), gph F )} , u ∈ Rm

is called the Clarke coderivative of F at (x̄, ȳ) with respect to v.
We now recall the definition of the limiting second-order subdifferential. This is first introduced by

Mordukhovich in [19].

Definition 2.5. Let (x̄, ȳ) ∈ gph ∂φ. The limiting/Mordukhovich second-order subdifferential of φ at x̄
relative to ȳ is a set-valued mapping ∂2φ(x̄, ȳ) : Rn ⇒ Rn defined by

∂2φ(x̄, ȳ)(u) := (D∗∂φ)(x̄, ȳ)(u) = {v : (v,−u) ∈ N(((x̄, ȳ)); gph∂φ)}, u ∈ Rn.

Note that if φ is strictly differentiable at x̄, then ∂φ(x̄) = {∇φ(x̄)} with ∇φ(x̄) being the Fréchet
derivative of φ at x̄, see [21, Corollary 1.82]. Recall that the function φ : Rn → Rm is said to be strictly
differentiable at x̄ if and only if there is a linear continuous operator ∇φ(x̄) : Rn → Rm, called the
Fréchet derivative of φ at x̄, such that

lim
x→x̄
u→x̄

φ(x)− φ(u)− ⟨∇φ(x̄), x− u⟩
∥x− u∥

= 0.

Clearly, if φ ∈ C1,1(Rn), then φ is strictly differentiable on Rn and so ∂2φ(x̄, ȳ)(u) = (D∗∇φ)(x̄)(u).
We recall here that a real-valued function is said to be a C1,1 function if it is Fréchet differentiable with
a locally Lipschitz gradient.

In Definition 2.5, if the limiting coderivative is replaced by the Clarke coderivative, then we obtain
the corresponding Clarke second-order subdifferential ∂2

Cφ(x̄, ȳ).

Proposition 2.6 (see [21, Theorem 1.90]). If φ ∈ C1,1(Rn), then one has

∂2φ(x̄)(u) := ∂2φ(x̄,∇φ(x̄))(u) = (D∗∇φ)(x̄)(u) = ∂⟨u,∇φ⟩(x̄) ∀u, x̄ ∈ Rn.

In [12], the authors introduced the so-called the second-order symmetric subdifferential in the sense
of Mordukhovich as follows.

Definition 2.7 (see [12, Definition 2.6]). Let φ ∈ C1,1(Rn) and x̄ ∈ Rn. The second-order symmetric
subdifferential of φ at x̄ is a multifunction ∂2

Sφ(x̄) : Rn ⇒ Rn defined by
∂2
Sφ(x̄)(u) := ∂S⟨u,∇φ⟩(x̄), ∀u ∈ Rn.

By definition and (2.1), one has
∂2φ(x̄)(u) ⊂ ∂2

Sφ(x̄)(u) ⊂ ∂2
Cφ(x̄, ȳ)(u)

and the above inclusions may be strict.
We end this section by recall some results on the properties of second-order subdifferentials that will

be needed in the sequel.

Proposition 2.8 (see [12, 21, 30]). Let φ ∈ C1,1(Rn) and x̄ ∈ Rn. The following assertions hold:
(i) For any λ ≥ 0, one has ∂2φ(x̄)(λu) = λ∂2φ(x̄)(u), ∀u ∈ Rn.

(ii) For any u ∈ Rn, the set ∂2φ(x̄)(u) is nonempty and compact.
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(iii) For any u ∈ Rn, the mapping ∂2φ(·)(u) is locally bounded around x̄ and if xk → x̄, vk → v, where
vk ∈ ∂2φ(xk)(u) for all k ∈ N, then v ∈ ∂2φ(x̄)(u).

The Taylor formula in the form of inequalities for C1,1 functions, employing the limiting second-
order subdifferential, plays an important role for our research.

Theorem 2.9 (see [6, Theorem 3.1]). Let φ be of class C1,1(Rn) and a, b ∈ Rn. Then, there exist z ∈
∂2φ(ξ)(b− a), where ξ ∈ [a, b], z′ ∈ ∂2φ(ξ′)(b− a), where ξ′ ∈ [a, b], such that

1

2
⟨z′, b− a⟩ ≤ φ(b)− φ(a)− ⟨∇φ(a), b− a⟩ ≤ 1

2
⟨z, b− a⟩.

3. Main Results

In this paper, we investigate the following constrained vector optimization problem
minRm

+
f(x) (VOP)

s. t. x ∈ X := {x ∈ Rn : g(x) ≦ 0},

where f := (fl), l ∈ L := {1, . . . ,m}, and g := (gi), i ∈ I := {1, . . . , p}, are vector-valued functions
with C1,1 components defined on Rn.

3.1. Abadie second-order constraint qualification. In this subsection, we propose a type of second-
order constraint qualification in the sense of Abadie for problem (VOP) and establish some conditions
which assure that this constraint qualification holds true.

Fix any x̄ ∈ X and u ∈ Rn. Then by Proposition 2.8(ii), ∂2fl(x̄)(u), l ∈ L, and ∂2gi(x̄)(u), i ∈ I , are
nonempty and compact sets. Hence, there exist ξ∗l and ξl∗ (resp., ζ∗i and ζi∗) are elements in ∂2fl(x̄)(u)
(resp., ∂2gi(x̄)(u)) such that

⟨ξ∗l, u⟩ := max
{
⟨ξl, u⟩ : ξl ∈ ∂2fl(x̄)(u)

}
, l ∈ L,

⟨ξl∗, u⟩ := min
{
⟨ξl, u⟩ : ξl ∈ ∂2fl(x̄)(u)

}
, l ∈ L,

⟨ζ∗i, u⟩ := max
{
⟨ζi, u⟩ : ζi ∈ ∂2gi(x̄)(u)

}
, i ∈ I,

⟨ζi∗, u⟩ := min
{
⟨ζi, u⟩ : ζi ∈ ∂2gi(x̄)(u)

}
, i ∈ I.

For any a = (a1, a2) and b = (b1, b2) in R2, we denote the lexicographic order by
a ≦lex b, if a1 < b1 or a1 = b1 and a2 ≤ b2,

a <lex b, if a1 < b1 or a1 = b1 and a2 < b2.

For u, v ∈ Rn, put

F 2
l (u, v) :=

(
⟨∇fl(x̄), u⟩, ⟨∇fl(x̄), v⟩+ ⟨ξ∗l, u⟩

)
, l ∈ L

G2
i (u, v) :=

(
⟨∇gi(x̄), u⟩, ⟨∇gi(x̄), v⟩+ ⟨ζ∗i, u⟩

)
, i ∈ I,

F 2−
l (u, v) :=

(
⟨∇fl(x̄), u⟩, ⟨∇fl(x̄), v⟩+ ⟨ξl∗, u⟩

)
, l ∈ L

G2−
i (u, v) :=

(
⟨∇gi(x̄), u⟩, ⟨∇gi(x̄), v⟩+ ⟨ζi∗, u⟩

)
, i ∈ I,

L2(X; x̄, u) := {v ∈ Rn : G2
i (u, v) ≦lex (0, 0), i ∈ I(x̄)},

and
L−2(X; x̄, u) := {v ∈ Rn : G−2

i (u, v) ≦lex (0, 0), i ∈ I(x̄)},
where I(x̄) is the active index set to x̄ and defined by

I(x̄) := {i ∈ I : gi(x̄) = 0}.
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By definition, it is clear that L2(X; x̄, u) ⊂ L2−(X; x̄, u).
The following result gives an upper estimate of the second-order tangent set to the constraint set of

problem (VOP).

Proposition 3.1. Let u ∈ Rn be any vector. Then the following inclusion holds

T 2(X; x̄, u) ⊂ L2−(X; x̄, u).

Proof. Fix any v ∈ T 2(X; x̄, u). Then, there exist sequences tk ↓ 0 and vk converging to v such that

xk := x̄+ tku+
1

2
t2kv

k ∈ X, ∀k ∈ N.

Hence, for each i ∈ I(x̄), one has gi(xk) − gi(x̄) ≤ 0 for all k ∈ N. By the mean value theorem for
differentiable functions, there exists θk ∈ (x̄, xk) such that

⟨∇gi(θ
k), tku+

1

2
t2kv

k⟩ ≤ 0, ∀k ∈ N.

Dividing two sides of the above inequality by tk and letting k → ∞, we obtain ⟨∇gi(x̄), u⟩ ≤ 0. We
claim that

G2−
i (u, v) ≦lex (0, 0),

or, equivalently,
(⟨∇gi(x̄), u⟩, ⟨∇gi(x̄), v⟩+ ⟨ζi∗, u⟩) ≦lex (0, 0). (3.1)

Clearly, (3.1) is satisfied if ⟨∇gi(x̄), u⟩ < 0. When ⟨∇gi(x̄), u⟩ = 0, then we have
gi(x

k)− gi(x̄) = [gi(x
k)− gi(x̄+ tku)] + [gi(x̄+ tku)− gi(x̄)− tk⟨∇gi(x̄), u⟩].

By the mean value theorem for differentiable functions, there exists γk ∈ (x̄+ tku, x
k) such that

gi(x
k)− gi(x̄+ tku) = ⟨∇gi(γ

k),
1

2
t2kv

k⟩ = 1

2
t2k⟨∇gi(γ

k), vk⟩. (3.2)

By Theorem 2.9, there exist σk ∈ (x̄, x̄+ tku) and wk ∈ ∂2gi(σ
k)(tku) such that

gi(x̄+ tku)− gi(x̄)− tk⟨∇gi(x̄), u⟩ ≥
1

2
⟨wk, tku⟩ =

1

2
tk⟨wk, u⟩.

Since ∂2gi(σ
k)(tku) = tk∂

2gi(σ
k)(u), one has wk = tkζ

k for some ζk ∈ ∂2gi(σ
k)(u). Thus

gi(x̄+ tku)− gi(x̄)− tk⟨∇gi(x̄), u⟩ ≥
1

2
t2k⟨ζk, u⟩. (3.3)

This and (3.2) imply that

0 ≥ gi(x
k)− gi(x̄) ≥

1

2
t2s[⟨∇gi(γ

k), vk⟩+ ⟨ζk, u⟩]. (3.4)

Hence,
⟨∇gi(γ

k), vk⟩+ ⟨ζk, u⟩ ≤ 0, ∀k ∈ N. (3.5)
Since ∂2gi(·) is locally bounded around x̄ and limk→∞ σk = x̄, the sequence ζk is bounded. Without

loss of any generality, we may assume that ζk converges to ζi. By Proposition 2.8(iii), ζi ∈ ∂2gi(x̄)(u).
Since gi ∈ C1,1(Rn), one has

lim
k→∞

⟨∇gi(γ
k), vk⟩ = ⟨∇gi(x̄), v⟩.

Letting k → ∞ in (3.5) we arrive at ⟨∇gi(x̄), v⟩+ ⟨ζi, u⟩ ≤ 0. Consequently,
⟨∇gi(x̄), v⟩+ ⟨ζi∗, u⟩ ≤ 0.

This means that (3.1) holds true and so v ∈ L2−(X; x̄, u). The proof is complete. □

We now introduce a type of second-order constraint qualification in the sense of Abadie.
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Definition 3.2. Let x̄ ∈ X and u ∈ Rn. We say that x̄ satisfies the Abadie second-order constraint
qualification with respect to the direction u if

L2(X; x̄, u) ⊂ T 2(X; x̄, u). (ASCQ)

Remark 3.3. The (ASCQ) at x̄ with respect to the direction u = 0 reduces to the well-known Abadie
constraint qualification (ACQ); see [1]. As shown in [1], the (ACQ) plays a fundamental role in
establishing first-order optimality conditions of the KKT form for nonlinear optimization problems.

The following result ensures that the (ASCQ) holds at x̄ with respect to u.

Theorem 3.4. Let x̄ ∈ X and u ∈ Rn. Suppose that the following system (in the unknown w)

⟨∇gi(x̄), w⟩+ ⟨ζ∗i, u⟩ < 0, i ∈ I(x̄;u), (3.6)

has at least one solution, where

I(x̄;u) := {i ∈ I(x̄) : ⟨∇gi(x̄), u⟩ = 0}.

Then, the (ASCQ) holds at x̄ with respect to u.

Proof. Let w̄ ∈ Rn be a solution of the system (3.6) and fix any v ∈ L2(X; x̄, u). We claim that
v ∈ T 2(X; x̄, u). Indeed, let {rk} and {tj} be any positive sequences converging to zero. We may
assume that rk ∈ (0, 1) for all k ∈ N. For each k ∈ N, put vk := rkw̄+(1−rk)v. Clearly, lim

k→∞
vk = v.

Since v ∈ L2(X; x̄, u), we have

G2
i (u, v) =

(
⟨∇gi(x̄), u⟩, ⟨∇gi(x̄), v⟩+ ⟨ζ∗i, u⟩

)
≦lex (0, 0), ∀i ∈ I(x̄). (3.7)

This implies that ⟨∇gi(x̄), u⟩ ≤ 0 for all i ∈ I(x̄).
For k = 1, one has v1 = r1w̄+(1−r1)v. We now show that the sequence xj := x̄+tju+

1
2 t

2
jv

1 ∈ X
for all j large enough. To that end, we consider three cases as follows.
Case 1. i /∈ I(x̄), i.e., gi(x̄) < 0. Since xj → x̄ as j → ∞ and gi is continuous at x̄, there exists j1 ∈ N
such that gi(xj) < 0 for all j ≥ j1.
Case 2. i ∈ I(x̄) \ I ′(x̄;u), i.e., gi(x̄) = 0 and ⟨∇gi(x̄), u⟩ < 0. Since

lim
j→∞

gi(x
j)

tj
= lim

j→∞

gi(x̄+ tju+ 1
2 t

2
jv

1)− gi(x̄)

tj
= ⟨∇gi(x̄), u⟩ < 0,

there is j2 ∈ N such that gi(xj) < 0 for all j ≥ j2.
Case 3. i ∈ I ′(x̄;u), i.e., gi(x̄) = 0 and ⟨∇gi(x̄), u⟩ = 0. It follows from (3.7) that

⟨∇gi(x̄), v⟩+ ⟨ζ∗i, u⟩ ≤ 0.

This and the fact that w̄ is a solution of (3.6) imply that

⟨∇gi(x̄), v
1⟩+ ⟨ζ∗i, u⟩ = r1[⟨∇gi(x̄), w̄⟩+ ⟨ζ∗i, u⟩] + (1− r1)[⟨∇gi(x̄), v⟩+ ⟨ζ∗i, u⟩] < 0.

By the right-hand side inequality of Theorem 2.9 and an analysis similar to the one made in the proof
of (3.4) show that there exist σj ∈ (x̄, x̄+ tju) and ζij ∈ ∂2gi(σj)(u) such that

gi(x
j) = gi(x

j)− gi(x̄)− tj⟨∇gi(x̄), u⟩ ≤
1

2
t2j [⟨∇gi(x̄), v

1⟩+ ⟨ζij , u⟩],

or, equivalently,
gi(x

j)
1
2 t

2
j

≤ ⟨∇gi(x̄), v
1⟩+ ⟨ζij , u⟩. (3.8)
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Without any loss of generality, we may assume that ζij converges to some ζi ∈ ∂2gi(x̄)(u) as j → ∞.
Taking the limit superior in (3.8) as j → ∞, we obtain

lim sup
j→∞

gi(x
j)

1
2 t

2
j

≤ ⟨∇gi(x̄), v
1⟩+ ⟨ζi, u⟩

≤ ⟨∇gi(x̄), v
1⟩+ ⟨ζ∗i < 0. (3.9)

Hence, there exists j3 ∈ N such that gi(xj) < 0 for all j ≥ j3.
Put J1 := max{j1, j2, j3}, then gi(x

j) < 0 for all j ≥ J1. This implies that xJ1 ∈ X .
Thus, by induction on k, we can construct a subsequence xJk satisfying

xJk = x̄+ tJku+
1

2
t2Jkv

k ∈ X,

for all k ∈ N. From this, lim
k→∞

tJk = 0, and lim
k→∞

vk = v it follows that v ∈ T 2(X; x̄, u). The proof is
complete. □

3.2. Second-order optimality conditions.

Definition 3.5 (see [5]). Let x̄ ∈ X . We say that:
(i) x̄ is an efficient solution (resp., a weak efficient solution) to problem (VOP) if there is no x ∈ X

satisfying f(x) ≤ f(x̄). (resp., f(x) < f(x̄)).
(ii) x̄ is a local efficient solution (resp., local weak efficient solution) to problem (VOP) if it is efficient

solution (resp., weak efficient solution) in U ∩X with some neighborhood U of x̄.

The following theorem gives a first-order necessary optimality condition for weak efficiency of
(VOP).

Theorem 3.6 (see [13, Theorem 3.1]). If x̄ ∈ X is a local weak efficient solution to problem (VOP) and
the (ACQ) holds at x̄, then the following system has no solution u ∈ Rn:

⟨∇fl(x̄), u⟩ < 0, l ∈ L,

⟨∇gi(x̄), u⟩ ≤ 0, i ∈ I(x̄).

Let x̄ ∈ X and u ∈ Rn. We say that u is a critical direction at x̄ if

⟨∇fl(x̄), u⟩ ≤ 0, ∀l ∈ L,

⟨∇fl(x̄), u⟩ = 0, for at least one l ∈ L,

⟨∇gi(x̄), u⟩ ≤ 0, ∀i ∈ I(x̄).

The set of all critical direction of (VOP) at x̄ is denoted by C(x̄). For each u ∈ C(x̄), put

C(x̄, u) := {w ∈ Rn : ⟨∇gi(x̄), w⟩ ≤ 0, i ∈ I(x̄;u)}

and
L(x̄;u) := {l ∈ L : ⟨∇fl(x̄), u⟩ = 0}.

The following theorem gives some second-order KKT necessary optimality conditions for a local weak
efficient solution to problem (VOP).

Theorem 3.7. Let x̄ be a local weak efficient solution to problem (VOP). Suppose that the (ASCQ) holds
at x̄ for any critical direction. Let ū be a critical direction at x̄. Then, there exist λ ∈ Rm

+ \{0} and µ ∈ Rm
+
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such that
m∑
l=1

λl∇fl(x̄) +

p∑
i=1

µi∇gi(x̄) = 0, (3.10)

m∑
l=1

λl⟨ξ∗l, ū⟩+
p∑

i=1

µi⟨ζ∗i, ū⟩ ≥ 0, (3.11)

λl = 0, l /∈ L(x̄; ū) (3.12)
µi = 0, i /∈ I(x̄; ū), (3.13)
m∑
l=1

λl⟨∇fl(x̄), w⟩ ≥ 0, ∀w ∈ C(x̄, ū) ∩ (ū)⊥, (3.14)

where
(ū)⊥ := {u ∈ Rn : ⟨ū, u⟩ = 0}.

Proof. The proof of the theorem follows some ideals of [13, Theorem 3.2]. By assumptions, we first
show that the following system

F 2
l (u, v) <lex (0, 0), l ∈ L, (3.15)

G2
i (u, v) ≦lex (0, 0), i ∈ I(x̄), (3.16)

has no solution (u, v) ∈ Rn×Rn. Suppose on the contrary that there exists (u, v) ∈ Rn×Rn satisfying
(3.15)–(3.16). This implies that v ∈ L2(X; x̄, u) and

⟨∇fl(x̄), u⟩ ≤ 0, l ∈ L,

⟨∇gi(x̄), u⟩ ≤ 0, i ∈ I(x̄).

Since the (ASCQ) holds at x̄ for any critical direction, so this condition holds at x̄ for the direction 0.
This means that the (ACQ) is satisfied at x̄. By Theorem 3.6, ⟨∇fl(x̄), u⟩ = 0 for at least one l ∈ L.
Hence, u is a critical direction of problem (VOP) at x̄. Since the (ASCQ) holds at x̄ for the critical
direction u, we have that v ∈ T 2(X; x̄, u). This implies that there exist sequences vk converging to v
and tk ↓ 0 such that

xk := x̄+ tku+
1

2
t2kv

k ∈ X, ∀k ∈ N.

Fix any l ∈ L. We consider two cases of l as follows.
Case 1. l ∈ L(x̄;u), i.e., ⟨∇fl(x̄), u⟩ = 0. It follows from (3.15) that

⟨∇fl(x̄), v⟩+ ⟨ξ∗l, u⟩ < 0.

An analysis similar to the one made in the proof of (3.9) shows that there exists ξl ∈ ∂2fl(x̄)(u) such
that

lim sup
k→∞

fl(x
k)− fl(x̄)
1
2 t

2
k

≤ ⟨∇fl(x̄), v⟩+ ⟨ξl, u⟩

≤ ⟨∇fl(x̄), v⟩+ ⟨ξ∗l, u⟩ < 0.

This implies that there exists k1 ∈ N such that fl(xk)− fl(x̄) < 0 for all k ≥ k1.
Case 2. l ∈ L \ L(x̄;u), i.e., ⟨∇fl(x̄), u⟩ < 0. Then

lim
k→∞

fl(x
k)− fl(x̄)

tk
= ⟨∇fl(x̄), u⟩ < 0.

Hence, there exists k2 ∈ N such that fl(xk)− fl(x̄) < 0 for all k ≥ k2.
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Put k0 := max{k1, k2}. Then we see that fl(xk) − fl(x̄) < 0 for all l ∈ L and k ≥ k0, which
contradicts the fact that x̄ is a local weak efficient solution of (VOP).

We now fix any ū ∈ C(x̄). Then, the above arguments show that the following system

F 2
l (ū, v) <lex (0, 0), l ∈ L,

G2
i (ū, v) ≦lex (0, 0), i ∈ I(x̄),

has no solution v ∈ Rn. This means that the following system

⟨∇fl(x̄), v⟩+ ⟨ξ∗i, x̄⟩ < 0, l ∈ L(x̄; ū),

⟨∇gi(x̄), v⟩+ ⟨ζ∗i, x̄⟩ ≤ 0, i ∈ I(x̄; ū),

has no solution v ∈ Rn. By the Motzkin theorem of the alternative [18, p. 28], there exist λ ∈ Rm
+ \{0}

and µ ∈ Rp
+ such that

m∑
l=1

λl∇fl(x̄) +

p∑
i=1

µi∇gi(x̄) = 0,

m∑
l=1

λl⟨ξ∗l, ū⟩+
p∑

i=1

µi⟨ζ∗i, ū⟩ ≥ 0,

λl = 0, l /∈ L(x̄; ū)

µi = 0, i /∈ I(x̄; ū).

We now see that 〈
m∑
l=1

λl∇fl(x̄) +

p∑
i=1

µi∇gi(x̄), w

〉
= 0

for all w ∈ Rn. Hence, if w ∈ C(x̄; ū) ∩ (ū)⊥, then we have that
m∑
l=1

λl⟨∇fl(x̄), w⟩ = −
p∑

i=1

µi⟨∇gi(x̄), w⟩ = −
∑

i∈I(x̄,ū)

µi⟨∇gi(x̄), w⟩ ≥ 0.

Since (3.12) and w ∈ C(x̄; ū), we have
m∑
l=1

λl⟨∇fl(x̄), w⟩ = −
∑

i∈I(x̄;ū)

µi⟨∇gi(x̄), w⟩ ≥ 0.

Thus (3.14) holds true. The proof is complete. □

Remark 3.8. Condition (3.11) can be stated as follows:
m∑
l=1

λl max{⟨ξl, ū⟩ : ξl ∈ ∂2fl(x̄)(u)}+
p∑

i=1

µimax{⟨ζi, ū⟩ : ζi ∈ ∂2gi(x̄)(u)} ≥ 0.

Since the limiting second-order subdifferential is strictly smaller than the second-order symmetric sub-
differential, our result Theorem 3.7 improves the corresponding result [13, Theorem 3.2].

The vector (λ, µ) ∈ (Rm
+ \{0})×Rp

+ satisfying condition (3.10)–(3.14) is called a pair of weak second-
order KKT multipliers. If we can choose (λ, µ) ∈ (Rm

+ \ {0})× Rp
+ such that λl > 0 for all l ∈ L, then

(λ, µ) is called a pair of strong second-order KKT multipliers.
The following theorem gives some sufficient conditions of the strong second-order KKT form for a

local efficient solution of problem (VOP).
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Theorem 3.9. Let x̄ ∈ X . Suppose that the (ACQ) holds at x̄ and for each u ∈ C(x̄) \ {0} there exist
λ ∈ Rm

+ and µ ∈ Rp
+ such that

m∑
l=1

λl∇fl(x̄) +

p∑
i=1

µi∇gi(x̄) = 0, (3.17)

m∑
l=1

λl⟨ξl∗, u⟩+
p∑

i=1

µi⟨ζi∗, u⟩ > 0, (3.18)

λl > 0, ∀l ∈ L, (3.19)
µi = 0, i /∈ I(x̄;u), (3.20)
m∑
l=1

λl⟨∇fl(x̄), w⟩ > 0, ∀w ∈ C(x̄, u) ∩ u⊥ \ {0}, (3.21)

then x̄ is a local efficient solution of (VOP).

Proof. The proof of the theorem follows some ideals of [13, Theorem 3.6]. Suppose on the contrary that
x̄ is not a local efficient solution of (VOP). Then, there exists a sequence xk ∈ X that converges to x̄
and satisfies

f(xk) ≤ f(x̄), ∀k ∈ N. (3.22)
This implies that xk ̸= x̄ for all k ∈ N. Hence, for each k ∈ N, put tk := ∥xk − x̄∥. Then tk ↓ 0 as
k → ∞. Let uk := 1

tk
(xk − x̄). Then, ∥uk∥ = 1. Without any loss of generality, we may assume that

{uk} converges to some u ∈ Rn with ∥u∥ = 1. By the mean value theorem for differentiable functions
and (3.22), we have

0 ≥ fl(x
k)− fl(x̄) = tk⟨∇fl(x̄), u

k⟩+ o(tk), ∀k ∈ N, l ∈ L.

This implies that

⟨∇fl(x̄), u⟩ = lim
k→∞

⟨∇fl(x̄), u
k⟩ = lim

k→∞

fl(x
k)− fl(x̄)

tk
≤ 0, ∀l ∈ L.

Similarly, since gi(x
k) = gi(x

k)− gi(x̄) ≤ 0 when i ∈ I(x̄), we obtain

⟨∇gi(x̄), u⟩ ≤ 0, ∀i ∈ I(x̄).

By the (ACQ) and Theorem 3.6, there exists at least one l ∈ L such that ⟨∇fl(x̄), u⟩ = 0. This implies
that u ∈ C(x̄) and ∥u∥ = 1.

By assumptions, there exist λ ∈ Rm
+ and µ ∈ Rp

+ satisfying (3.17)–(3.21). It is easy to see from (3.19)
that ⟨∇fl(x̄), u⟩ = 0 for all l ∈ L. Thus, we have

fl(x
k)− fl(x̄) = [fl(x̄+ tku

k)− fl(x̄+ tku)] + [fl(x̄+ tku)− fl(x̄)− tk⟨∇fl(x̄), u⟩].

It follows from the differentiability of fl that there exists θlk ∈ (x̄+ tku, x
k) satisfying

fl(x
k)− fl(x̄+ tku) = tk⟨∇fl(θ

lk), uk − u⟩.

By Theorem 2.9 and an analysis similar to the one made in the proof of (3.3), there exist γlk ∈ (x̄, x̄+tku)
and ξlk ∈ ∂2fl(γ

lk)(u) satisfying

fl(x̄+ tku)− fl(x̄)− tk⟨∇fl(x̄), u⟩ ≥
1

2
t2k⟨ξlk , u⟩.

Hence
0 ≥ fl(x

k)− fl(x̄) ≥ tk⟨∇fl(θ
lk), uk − u⟩+ 1

2
t2k⟨ξlk , u⟩,
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or, equivalently,
⟨∇fl(θ

lk), uk − u⟩+ 1

2
tk⟨ξlk , u⟩ ≤ 0. (3.23)

Similarly, for each k ∈ N and i ∈ I(x̄;u), there are τ ik ∈ (x̄ + tku, x
k), σik ∈ (x̄, x̄ + tku) and

ζik ∈ ∂2gi(σ
ik)(u) such that

0 ≥ gi(x
k)− gi(x̄) ≥ tk⟨∇gi(τ

ik), uk − u⟩+ 1

2
t2k⟨ζik , u⟩,

or, equivalently,
⟨∇gi(τ

ik), uk − u⟩+ 1

2
tk⟨ζik , u⟩ ≤ 0. (3.24)

By Proposition 2.8, without loss any of generality, we may assume that ξlk (resp. ζik ) converges to
ξl ∈ ∂2fk(x̄)(u) (resp. ζi ∈ ∂2gi(x̄)(u)). Combining (3.23), (3.24), and (3.20), we obtain

m∑
l=1

λl

[
⟨∇fl(θ

lk), uk − u⟩+ 1

2
tk⟨ξlk , u⟩

]
+

p∑
i=1

µi

[
⟨∇gi(σ

ik), uk − u⟩+ 1

2
tk⟨ζik , u⟩

]
≤ 0. (3.25)

For each k ∈ N, put sk := ∥uk − u∥ and wk := uk−u
sk

. Then, (3.25) is equivalent to
m∑
l=1

λl

[
sk⟨∇fl(θ

lk), wk⟩+ 1

2
tk⟨ξlk , u⟩

]
+

p∑
i=1

µi

[
sk⟨∇gi(σ

ik), wk⟩+ 1

2
tk⟨ζik , u⟩

]
≤ 0. (3.26)

Since ∥wk∥ = 1 for all k ∈ N, without any loss of generality, we may assume that wk converges to
some w ∈ Rn with ∥w∥ = 1. By passing to subsequences if necessary we may consider three cases of
sequences tk and sk as follows.
Case 1. lim

k→∞

sk
tk

= 0. Dividing the two sides of (3.26) by 1
2 tk and then taking to the limit when k → ∞

we obtain
m∑
l=1

λl⟨ξl, u⟩+
m∑
i=1

µi⟨ζi, u⟩ ≤ 0.

Thus
m∑
l=1

λl⟨ξl∗, u⟩+
m∑
i=1

µi⟨ζi∗, u⟩ ≤
m∑
l=1

λl⟨ξl, u⟩+
m∑
i=1

µi⟨ζi, u⟩ ≤ 0,

contrary to (3.18).
Case 2. lim

k→∞

sk
tk

= r > 0. Dividing the two sides of (3.26) by 1
2 tk and then taking to the limit when

k → ∞ we obtain
m∑
l=1

λl[r⟨∇fl(x̄), w⟩+ ⟨ξl, u⟩] +
m∑
i=1

µi[r⟨∇gi(x̄), w⟩+ ⟨ζiu⟩] ≤ 0.

This and (3.17) imply that
m∑
l=1

λl⟨ξl, u⟩+
m∑
i=1

µi⟨ζi, u⟩ ≤ 0,

again contrary to (3.18).
Case 3. lim

k→∞

sk
tk

= +∞, or, equivalently, lim
k→∞

tk
sk

= 0. For each k ∈ N, one has

xk = x̄+ tku
k = x̄+ tku+ tkskw

k.

Hence,

fl(x
k)− fl(x̄) = [fl(x

k)− fl(x̄+ tku)] + [fl(x̄+ tku)− fl(x̄)− tk⟨∇fl(x̄), u⟩]
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for all l ∈ L and k ∈ N. By an analysis similar to the one made in the proof of (3.23) we can find
ylk ∈ (x̄+ tku, x

k), γlk ∈ (x̄, x̄+ tku) and ξlk ∈ ∂2fl(γ
lk)(u) such that

0 ≥ fl(x
k)− fl(x̄) ≥ tksk⟨∇fl(y

lk), wk⟩+ 1

2
t2k⟨ξlk , u⟩.

Hence,
⟨∇fl(y

lk), wk⟩+ 1

2

tk
sk

⟨ξlk , u⟩ ≤ 0. (3.27)

Letting k → ∞ in (3.27) we obtain ⟨∇fl(x̄), w⟩ ≤ 0 for all l ∈ L and so
l∑

i=1

λi⟨∇fi(x̄), w⟩ ≤ 0.

We now show thatw ∈ K(x̄, u)∩u⊥\{0} and arrive at a contradiction. Indeed, since uk = u+rkw
k →

u, wk → w as k → ∞, and uk = u + rkw
k ∈ Sn for all k ∈ N, we have w ∈ T (Sn;u) = u⊥. Hence,

w ∈ K(x̄, u) ∩ u⊥ \ {0}. The proof is complete. □

Remark 3.10. Condition (3.18) can be stated as follows:
m∑
l=1

λl min{⟨ξl, ū⟩ : ξl ∈ ∂2fl(x̄)(u)}+
p∑

i=1

µimin{⟨ζi, ū⟩ : ζi ∈ ∂2gi(x̄)(u)} > 0.

Since the limiting second-order subdifferential is strictly smaller than the second-order symmetric one,
our result Theorem 3.9 improves the corresponding one [13, Theorem 3.6].

4. Conclusion

By using the limiting second-order Taylor formula in the form of inequalities for C1,1 functions,
we obtain second-order KKT necessary optimality conditions for efficiency (Theorem 3.7) and a strong
second-order KKT sufficient optimality condition (Theorem 3.9) for local efficient solutions of C1,1

vector optimization problems with inequality constraints. These results improve and generalize the
corresponding of Huy et al. [13, Theorems 3.2 and 3.6] and of Feng and Li [6]. By a similar way, we
can also drive results that improve the corresponding ones of Huy et al. [13, Theorems 3.3–3.5] and of
Tuyen et al. [35, Theorem 4.5].
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[7] G. Giorgi, B. Jiménez, and V. Novo. An overview of second order tangent sets and their application to vector optimization.

SeMA Journal, 52:73–96, 2010.



SECOND-ORDER KKT OPTIMALITY CONDITIONS FOR C1,1 VOPS 69

[8] A. Guerraggio, D. T. Luc, and N. B. Minh. Second-order optimality conditions for C1 multiobjective programming prob-
lems. Acta Mathematica Vietnamica 26:257–268, 2001.

[9] A. Guerraggio and D.T. Luc. Optimality conditions forC1,1 vector optimization problems. Journal of Optimization Theory
and Applications, 109:615–629, 2001.
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