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Abstract. We consider a linear fractional optimization problem involving integral functions defined on
Cn[0, 1], which has a geometric constraint and inequality constraints and obtain optimality theorems for
the problem which hold without any constraint qualification. Moreover, we characterize solution set for
the problem in terms of sequential Lagrange multipliers of a known solution of the problem.
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1. Introduction and Preliminaries

Convex optimization problems need constraint qualifications for getting their optimality theorems
and strong duality theorems. For example, the Slater condition becomes an important constraint qual-
ification for the problems. But it is well-known that the Slater condition is very often violated.

Jeyakumar et al. [8] proved the Lagrange multiplier optimality theorems for convex optimization
problem, which heldwithout any constraint qualification andwhichwere expressed by sequences. Such
optimality theorems have been studied formany kinds of convex optimization problems [9, 11, 16, 19, 20,
21, 23]. In particular, Kim et al. [19] investigated optimality theorems for a linear fractional optimization
problem involving integral functions defined on on Cn[0, 1], which has a geometric constraint and
equality constraints and which hold without any constraint qualification. In this paper, using slack
functions, we intend to extend the optimality conditions for equality constraints in [19] to ones for
inequality constraints.

On the other hand, optimization problems often have many solutions. Mangasarian [28] presented
simple and elegant characterizations of the solution set for a convex optimization problem over a convex
set when one solution is known. These characterizations have been extended to various classes of
optimization problems [4, 5, 7, 10, 12, 13, 18]. In particular, Kim et al. [17] charactrized solution sets for
a linear fractional optimization problem involving integral functions defined on on Cn[0, 1], which has
a geometric constraint and equality constraints. In this paper, we intend to obtain the characterization
of solution set of the linear fractional optimization problem involving integral functions defined on
Cn[0, 1], which has a geometric constraint and inequality constraints.
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Consider the following linear fractional optimization problem:

(P) Minimizex
∫ 1
0 c(t)Tx(t)dt+ α∫ 1
0 d(t)Tx(t)dt+ β

subject to x(·) ∈ K,

ai(·)Tx(·)− bi(·) ≦ 0, i = 1, · · · ,m,

where c, d, ai, i = 1, · · · ,m are given in Cn[0, 1], K is a closed convex cone in Cn[0, 1], bi, i =
1, · · · ,m are given in C[0, 1]. Here we denote Cn[0, 1] = {x | x : [0, 1] → Rn : continuous}
and C[0, 1] = {z | z : [0, 1] → R : continuous}. We will use the norm on Cn[0, 1] defined by
||x|| = maxt∈[0,1]||x(t)||.

Define D = {x ∈ Cn[0, 1] | x(·) ∈ K, ai(·)Tx(·)− bi(·) ≦ 0, i = 1, · · · ,m}.
We consider the following problem equivalent to the problem (P):

(EP) Minimizex,s
∫ 1
0 c(t)Tx(t)dt+ α∫ 1
0 d(t)Tx(t)dt+ β

subject to x(·) ∈ K,

ai(·)Tx(·)− bi(·) + si(·) = 0, i = 1, · · · ,m,

si(·) ≧ 0, si ∈ C[0, 1], i = 1, · · · ,m.

We define the nonnegative dual cone ofK as

K∗ = {v ∈ Cn[0, 1]∗ | v(x) ≧ 0 ∀x ∈ K},

where Cn[0, 1]∗ = {x∗ | x∗ : Cn[0, 1] → R : continuous and linear}. We will use the norm on
Cn[0, 1]∗ defined by

||x∗|| = sup{|x∗(x)|/||x|| | x ∈ Cn[0, 1]∗ and x ̸= 0}.

In this paper, by using the optimality theorem for the problem (EP), we obtain optimality theorems for
the problem (P) which hold without any constraint qualification and which are expressed by sequences.
Moreover, by using the optimality theorems for the problem (P), we characterize the solution set for
(P) when we know one solution for (P).

Now we give some notations and preliminary results that will be used in the paper. Let E be a
normed linear space over R with norm x 7→ ∥x∥ and let E∗ the dual of E.

The conjugate function of a function f : E → R is the function f∗ : E∗ → R defined by

f∗(x∗) := sup
x∈E

{⟨x∗, x⟩ − f(x)} (x∗ ∈ E∗).

A function g : E → R ∪ {+∞} is said to be convex if for all t ∈ [0, 1],

g((1− t)x+ ty) ≤ (1− t)g(x) + tg(y)

for all x, y ∈ E. Let g : E → R ∪ {+∞} be a proper convex function. We denote the domain and
the epigraph of g by dom g := {x ∈ E : g(x) < +∞} and epi g := {(x, r) ∈ E × R : g(x) ≤ r},
respectively. We say a function g is lower semicontinuous if lim infy→x g(y) ≥ g(x) for all x ∈ E.

Following the proof ofTheorem 2.123 (i) and (ii) in [6], we can prove the following proposition stated
in a normed space with a strong topology(norm topology). The proposition was proved on a normed
space with weak*-topology in [24], and was stated on a Banach space with weak*-topology in [14].

Proposition 1.1. [19] LetE be a normed space. Consider a family of proper lower semicontinuous convex
functions ϕi : E → R ∪ {+∞}, i ∈ I, where I is an arbitrary index set. Suppose that supi∈I ϕi is not
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identically +∞. Then
epi (sup

i∈I
ϕi)

∗ = cl co
⋃
i∈I

epiϕ∗
i .

Following the proof of Theorem 2.107 and Theorem 2.123 in [6], we can prove the following propo-
sition stated in a normed space. The proposition was stated on the Banach space (see Lemma 1 in
[3]).

Proposition 1.2. [19] Let E be a normed inear space. Let ϕ1, ϕ2 : E → R ∪ {+∞} be a proper, lower
semicontinuous and convex function. Then epi (ϕ1 + ϕ2)

∗ = cl (epiϕ∗
1 + epiϕ∗

2).

Using Theorem 1,1 in [1] and Proposition 12.6 in [2], we can prove the following proposition.

Proposition 1.3. [25, 26] Let E be a Banach space. Let g1 : E → R∪ {+∞} be a proper lower semicon-
tinuous convex function and let g2 : E → R ∪ {+∞} be a continuous convex function. Then

epi(g1 + g2)
∗ = epi g∗1 + epi g∗2.

2. Seqential Optimality Theorems

Let NBV[0, 1] = {µ | µ : [0, 1] → R : a function of bounded variation, left continuous on [0,1) and
µ(1) = 0}.

Now we give the optimality theorems for the problem (P) which holds without any constraint qual-
ification. Following the proof methods in the optimality theorems in [19], we can prove the optimality
theorems for the problem (EP). By using the optimality theorem for the problem (EP), we can obtain
the following optimality theorems for the problem (P) which hold without any constraint qualification.
For the completeness, we give the proof for the optimality theorems for the problem (EP).

Theorem 2.1. Let x̄ ∈ D and suppose that for any x ∈ D,
∫ 1
0 d(t)Tx(t)dt+ β > 0. Then the following

are equivalent:
(i) x̄ is an optimal solution of (P);
(ii) there exists s̄ ∈ Cm[0, 1] such that (x̄, s̄) is feasible for (EP) and
(0, 0, 0) ∈

{
(
∫ 1
0 [c(t)− q(x̄)d(t)]T (·)dt, 0,−α+ q(x̄)β)

}
+ {(0, 0)} × R+

+cl
[ ⋃
µi∈NBV [0,1]

{(−
∑m

i=1

∫ 1
0 µi(t)ai(t)

T (·)dt,−
∑m

i=1

∫ 1
0 µi(t)(·)idt,−

∑m
i=1

∫ 1
0 µi(t)bi(t)dt)}

+
(
−(K∗ × (S × · · · ×S)∗)×R+

)]
, where S = {s ∈ C[0, 1] | s(·) ≧ 0}, 0 is the zero linear functional

on C[0, 1] and S∗ = {v ∈ C[0, 1]∗ | v(s) ≧ 0 ∀s ∈ S} and q(x̄) =
∫ 1
0 c(t)T x̄(t)dt+α∫ 1
0 d(t)T x̄(t)dt+β

;

(iii) there exist s̄ ∈ Cm[0, 1] such that (x̄, s̄) is feasible for (EP), µn
i ∈ NBV [0, 1], i = 1, · · · ,m,

k∗n ∈ K∗ and s∗n ∈ (S × · · · × S)∗ such that∫ 1

0
[c(t)− q(x̄)d(t)]T (·)dt+ lim

n→∞

(
−

m∑
i=1

∫ 1

0
µn
i (t)ai(t)

T (·)dt− k∗n

)
= 0

lim
n→∞

[−
m∑
i=1

∫ 1

0
µn
i (t)(·)idt− s∗n] = 0,

lim
n→∞

k∗n(x̄) = 0 and lim
n→∞

s∗n(s̄) = 0.

Here s∗n(s1, · · · , sm) =
∑m

i=1w
∗
n,i(si) ((s1, · · · , sm) ∈ S × · · · × S) for some w∗

n,i ∈ S∗.

Proof. Let D̃ = {(x, s) ∈ Cn+m[0, 1] | x(·) ∈ K, si(·) ≧ 0, s = (s1, · · · , sm) and ai(·)Tx(·)−bi(·)+
si(·) = 0, i = 1, · · · ,m} and K̃ = {(x, s) ∈ Cn+m[0, 1] | x ∈ K, s1(·) ≧ 0, · · · , sm(·) ≧ 0}. Then D̃
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is the feasible set of (EP) and K̃ is a closed convex cone. Let ˜̃D = {(x, s) ∈ Cn+m[0, 1] | ai(·)Tx(·)−
bi(·)+ si(·) = 0, i = 1, · · · ,m}. Then D̃ =

˜̃
D ∩ K̃ and ˜̃

D = {(x, s) ∈ Cn+m[0, 1] |
∫ t
0 [ai(τ)

Tx(τ)−
bi(τ) + si(τ)]dτ = 0 ∀t ∈ [0, 1], i = 1, · · · ,m}. Let hi(x, s) =

∫ ·
0{[ai(τ)

Tx(τ) − bi(τ)] + si(τ)}dτ ,
that is, hi(x, s)(t) =

∫ t
0{[ai(τ)

Tx(τ)− bi(τ)] + si(τ)}dτ ∀t ∈ [0, 1]. Then hi : C
n+m[0, 1] → C[0, 1]

is continuous and affine and ˜̃
D = {(x, s) ∈ Cn+m[0, 1] | hi(x, s) = 0, i = 1, · · · ,m} and so ˜̃

D is
closed and convex.

If (x, s) ∈ ˜̃
D, then hi(x, s) = 0 and so for any λi ∈ C[0, 1]∗,

∑m
i=1(λi ◦ hi)(x, s) = 0 and hence

sup
λi∈C[0,1]∗

∑m
i=1 λihi(x, s) = 0

If (x, s) ̸∈ ˜̃
D, then there exists i ∈ {1, · · · ,m} such that hi(x, s) ̸= 0, and so by Hahn-Banach the-

orem, there exists λi ∈ C[0, 1]∗ such that λi(hi(x, s)) = ∥hi(x, s)∥ > 0, and thus sup
λi∈C[0,1]∗

∑m
i=1(λi ◦

hi)(x, s) = +∞. Hence δ ˜̃
D
(x, s) = sup

λi∈C[0,1]∗

∑m
i=1(λi ◦ hi)(x, s). By Proposition 1.1,

epiδ∗˜̃
D

= cl co
⋃

λi∈C[0,1]∗

i=1,··· ,m

epi(
∑m

i=1 λi ◦ hi)∗. By Theorem 1 in ([27], p.113) (Riesz Representation Theo-

rem),

C[0, 1]∗ = {x∗ | x∗ : C[0, 1] → R is continuous and linear,

x∗(y) =

∫ 1

0
y(t)dµ(t) ∀y ∈ C[0, 1], µ : [0, 1] → R : a function, µ ∈ NBV[0, 1]},

where NBV[0, 1] := {µ | µ : [0, 1] → R : a function of bounded variation,
left-continuus on[0, 1) and µ(1) = 0}. Let λi ∈ C[0, 1]∗. Then there exist µi ∈ NBV[0, 1], i = 1, · · · ,m
such that

(λi ◦ hi)(x, s) =

∫ 1

0
hi(x, s)(t)dµi(t)

=

∫ 1

0

(∫ t

0
{[ai(τ)Tx(τ)− bi(τ)] + si(τ)}dτ

)
dµi(t).

Let gi(t) =
∫ t
0{[ai(τ)

Tx(τ)− bi(τ)] + si(τ)} dτ . Then fromTheorem 6.2.3 andTheorem 6.2.10 in [15],

(λi ◦ hi)(x, s) =

∫ 1

0
gi(t)dµi(t)

= −
∫ 1

0
µi(t)dgi(t) + gi(1)µi(1)− gi(0)µi(0)

= −
∫ 1

0
µi(t)dgi(t)

= −
∫ 1

0
µi(t)g

′
i(t)dt

= −
∫ 1

0
µi(t){[ai(t)Tx(t)− bi(t)] + si(t)}dt

∀(v∗, w∗) ∈ (Cn[0, 1])∗ × (Cm[0, 1])∗,

(λi ◦ hi)∗(v∗, w∗)

= sup
x∈Cn[0,1]
s∈Cm[0,1]

{
v∗(x) + w∗(s) +

∫ 1

0
µi(t){[ai(t)Tx(t)− bi(t)] + si(t)}dt

}
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= sup
x∈Cn[0,1]

{v∗(x) +
∫ 1

0
µi(t){[ai(t)Tx(t)]dt}

+ sup
s∈Cm[0,1]

{w∗(s) +

∫ 1

0
µi(t)si(t)dt} −

∫ 1

0
µi(t)bi(t)dt

=


−
∫ 1
0 µi(t)bi(t)dt if v∗(·) = −

∫ 1
0 µi(t)[ai(t)

T (·)(t)]dt
and w∗(·) = −

∫ 1
0 µi(t)(·)i(t)dt

+∞ otherwise.
So, we have

epi(λi ◦ hi)∗ = {(−
∫ 1

0
µi(t)[ai(t)

T (·)(t)]dt,−
∫ 1

0
µi(t)(·)i(t)dt,−

∫ 1

0
µi(t)bi(t)dt)}

+{(0, 0)} × R+.

Since
⋃

λi∈C[0,1]∗
epi(

∑m
i=1 λi ◦ hi)∗ is convex and cl(clA+B) = cl(A+B), where A, B are subsets of

a normed space, we have

epiδ∗˜̃
D

= cl
( ⋃
µi∈NBV[0,1]

{(−
m∑
i=1

∫ 1

0
µi(t)ai(t)

T (·)(t)dt,

−
m∑
i=1

∫ 1

0
µi(t)(·)i(t)dt,−

m∑
i=1

∫ 1

0
µi(t)bi(t)dt)}+ {(0, 0)} × R+

)
.

Let f(x, s) =
∫ 1
0 c(t)Tx(t)dt + α − q(x̄)

[∫ 1
0 d(t)Tx(t)dt + β

]
. Then f : Cn[0, 1] × Cm[0, 1] → R

continuous and affine and epif∗ = {(
∫ 1
0 [c(t)− q(x̄)d(t)]T (·)(t)dt, 0,−α+ q(x̄)β)}+ {(0, 0)} ×R+.

Let x̄ ∈ D. Let x̄ be an optimal solution of (P). Then there exists s̄ ∈ Cm[0, 1] such that (x̄, s̄) is an
optimal solution of (EP).

Thus f(x, s) + δ
D̃
(x, s) ≧ f(x̄, s̄) + δ

D̃
(x̄, s̄) ∀(x, s) ∈ Cn[0, 1] × Cm[0, 1]. By the definition

of conjugate function, (0, 0, 0) ∈ epi(f + δ
D̃
)∗. By Proposition 1.3, (0, 0, 0) ∈ epif∗ + epiδ∗

D̃
. Since

D̃ =
˜̃
D ∩ K̃ , it follows from Proposition 1.2 that (0, 0, 0) ∈ epif∗ + cl(epiδ∗˜̃

D
+ epiδ∗

K̃
)

We can check that epiδ∗
K̃

= −K̃∗ × R+ and K̃∗ = K∗ × (S × · · · × S)∗. So,

(0, 0, 0) ∈ {(
∫ 1

0
[c(t)− q(x̄)d(t)]T (·)dt, 0,−α+ q(x̄)β)}+ {(0, 0)} × R+

+cl
[ ⋃
µi∈NBV[0,1]

{(−
m∑
i=1

∫ 1

0
µi(t)ai(t)

T (·)dt,−
m∑
i=1

∫ 1

0
µi(t)(·)idt,

m∑
i=1

∫ 1

0
µi(t)bi(t)dt)}

+(−(K∗ × (S × · · · × S)∗)× R+

]
.

Thus (ii) holds.
From the above relation (ii), there exist µi ∈ NBV[0, 1], i = 1, · · · ,m, k∗n ∈ K∗, s∗n ∈ (S×· · ·×S)∗,

r ∈ R+, rn ∈ R+ such that∫ 1

0
[c(t)− q(x̄)d(t)]T (·)dt+ lim

n→∞

(
−

m∑
i=1

∫ 1

0
µn
i (t)ai(t)

T (·)dt− k∗n

)
= 0 (2.1)

lim
n→∞

(−
m∑
i=1

∫ 1

0
µn
i (t)(·)idt− s∗n) = 0 (2.2)
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−α+ q(x̄)β + r + lim
n→∞

(−
m∑
i=1

∫ 1

0
µn
i (t)bi(t)dt+ rn) = 0. (2.3)

From (2.1), (2.2) and (2.3),

0 =

∫ 1

0
[c(t)− q(x̄)d(t)]T x̄(t)dt+ α− q(x̄)β − r

+ lim
n→∞

(
−{

m∑
i=1

∫ 1

0
µn
i (t)[ai(t)

T x̄(t) + s̄i(t)− bi(t)]}dt− k∗n(x̄)− s∗n(s̄)− rn

)
= −r + lim

n→∞
(−k∗n(x̄)− s∗n(s̄)− rn).

Since k∗n(x̄) ≧ 0 and kn(x̄) ≧ 0 and s∗n(x̄) ≧ 0, r ≧ 0 and rn ≧ 0, we have r = 0, limn→∞[k∗n(x̄) +
s∗n(s̄)] = 0 and limn→∞ rn = 0. Thus (iii) holds.
Suppose that (iii) holds. Then there exist µn

i ∈ NBV [0, 1], kn ∈ K∗ and s∗n ∈ (S× · · ·×S)∗ such that∫ 1

0
[c(t)− q(x̄)d(t)]T (·)dt+ lim

n→∞

(
−

m∑
i=1

∫ 1

0
µn
i (t)ai(t)

T (·)dt− k∗n

)
= 0

lim
n→∞

(
−

m∑
i=1

∫ 1

0
µn
i (t)(·)i(t)dt− s∗n

)
= 0

and lim
n→∞

k∗n(x̄) = 0.

Thus, for any (x, s) ∈ D̃,

0 =

∫ 1

0
[c(t)− q(x̄)d(t)]T (x(t)− x̄(t))dt+ lim

n→∞

(
−

m∑
i=1

∫ 1

0
µn
i (t)ai(t)

T (x(t)− x̄(t))dt

−
m∑
i=1

∫ 1

0
µn
i (t)(si(t)− s̄i(t))dt− s∗n(s− s̄)

)
=

∫ 1

0
c(t)x(t)dt+ α− q(x̄)[

∫ 1

0
d(t)Tx(t)dt+ β]

−[

∫ 1

0
c(t)x̄(t)dt+ α] + q(x̄)[

∫ 1

0
d(t)T x̄(t)dt+ β]

+ lim
n→∞

[−
m∑
i=1

∫ 1

0
µn
i (t)(bi(t)− bi(t))dt− s∗n(s)].

Since limn→∞ s∗n(s) ≧ 0 for any (x, s) ∈ D̃,

∫ 1

0
c(t)x(t)dt+ α− q(x̄)[

∫ 1

0
d(t)Tx(t)dt+ β]

≧
∫ 1

0
c(t)x̄(t)dt+ α− q(x̄)[

∫ 1

0
d(t)T x̄(t)dt+ β]

= 0

for any (x, s) ∈ D̃. Thus ∫ 1
0 c(t)x(t)dt+ α∫ 1
0 d(t)Tx(t)dt+ β

≧ q(x̄) =

∫ 1
0 c(t)x̄(t)dt+ α∫ 1
0 d(t)T x̄(t)dt+ β

.

Hence (x̄, s̄) is an optimal solution of (EP) and so x̄ is an optimal solution of (P).
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FromTheorem 2.1, we can obtain the following theorem;

Theorem 2.2. Let x̄ ∈ D and suppose that for any x ∈ D,
∫ 1
0 d(t)Tx(t)dt + β > 0. Assume that⋃

µi∈NBV [0,1]

{(−
∑m

i=1

∫ 1
0 µi(t)ai(t)

T (·)dt,−
∑m

i=1

∫ 1
0 µi(t)(·)idt,−

∑m
i=1

∫ 1
0 µi(t)bi(t)dt)}+(−(K∗×

(S × · · · × S)∗)× R+ is closed in Cn[0, 1]∗ × R.
Then x̄ is an optimal solution of (P) if and only if there exists s̄ ∈ Cm[0, 1] such that (x̄, s̄) is feasible

for (EP) and there exist µi ∈ NBV [0, 1], i = 1, · · · ,m, k∗ ∈ K∗ and s∗ ∈ (S × · · · × S)∗ such that∫ 1

0
[c(t)− q(x̄)d(t)]T (·)(t)dt−

m∑
i=1

∫ 1

0
µi(t)ai(t)

T (·)(t)dt− k∗(·) = 0

m∑
i=1

∫ 1

0
µi(t)(·)idt+ s∗(·) = 0,

k∗(x̄) = 0 and s∗(s̄) = 0.

3. Characterizations for Solution Sets

Now we characterize a solution set for (P) in terms of sequential Lagrange multipliers of a known
solution of (P).

Let S be the set of all solution of (P). Let x̄ ∈ S. Then there exists s̄ ∈ Cm[0, 1] such that (x̄, s̄) is
feasible for (EP), there exist s̄ ∈ Cm[0, 1] such that (x̄, s̄) is feasible for (EP), µn

i ∈ NBV [0, 1], i =
1, · · · ,m, k∗n ∈ K∗ and s∗n ∈ (S × · · · × S)∗ such that∫ 1

0
[c(t)− q(x̄)d(t)]T (·)(t)dt+ lim

n→∞

(
−

m∑
i=1

∫ 1

0
µn
i (t)ai(t)

T (·)(t)dt− k∗n

)
= 0

lim
n→∞

[−
m∑
i=1

∫ 1

0
µn
i (t)(·)idt− s∗n(·)] = 0,

lim
n→∞

k∗n(x̄) = 0 and lim
n→∞

s∗n(s̄) = 0.

We keep (x̄, s̄). Then we get the following theorem:

Theorem 3.1. The set S of optimal solutions of the problem (P) is as follows:
S = {x̃ ∈ Cn[0, 1] | there exists s̃ ∈ Cm[0, 1] such that (x̃, s̃) is feasible for (EP)∫ 1
0 [c(t)− q(x̃)d(t)]T (·)(t)dt+ lim

n→∞

(
−
∑m

i=1

∫ 1
0 µn

i (t)ai(t)(·)(t)dt− k∗n

)
= 0,

lim
n→∞

[−
∑m

i=1

∫ 1
0 µn

i (t)(·)idt− s∗n] = 0, lim
n→∞

k∗n(x̃) = 0 and lim
n→∞

s∗n(s̃) = 0}.

Proof. Let x̃ ∈ S. Then there exists s̃ ∈ Cm[0, 1] such that (x̃, s̃) is feasible for (EP).Then q(x̃) = q(x̄),
i.e., ∫ 1

0 c(t)T x̃(t)dt+ α∫ 1
0 d(t)T x̃(t)dt+ β

=

∫ 1
0 c(t)T x̄(t)dt+ α∫ 1
0 d(t)T x̄(t)dt+ β

.

Hence ∫ 1

0

[
c(t)− q(x̄)d(t)

]T
x̄(t)dt = −α+ q(x̄)β

= −α+ q(x̃)β

=

∫ 1

0

[
c(t)− q(x̃)d(t)

]T
x̃(t)dt (3.1)
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So,∫ 1

0
c(t)T x̄(t)dt− q(x̄)

∫ 1

0
d(t)T x̄(t)dt+ lim

n→∞

(
−

m∑
i=1

∫ 1

0
µn
i (t)ai(t)

T x̄(t)dt− k∗n(x̄)
)
= 0, (3.2)

∫ 1

0
c(t)T x̃(t)dt− q(x̃)

∫ 1

0
d(t)T x̃(t)dt+ lim

n→∞

(
−

m∑
i=1

∫ 1

0
µn
i (t)ai(t)

T x̃(t)dt− k∗n(x̃)
)
= 0. (3.3)

From (3.1), (3.2) and (3.3),

lim
n→∞

[
−

m∑
i=1

∫ 1

0
µn
i (t)ai(t)

T x̄(t)dt− k∗n(x̄)
]
= lim

n→∞

[
−

m∑
i=1

∫ 1

0
µn
i (t)ai(t)

T x̃(t)dt− k∗n(x̃)
]

(3.4)

lim
n→∞

[
−

m∑
i=1

∫ 1

0
µn
i (t)s̄i(t)dt− s∗n(s̄)

]
= 0 (3.5)

lim
n→∞

[
−

m∑
i=1

∫ 1

0
µn
i (t)s̃i(t)dt− s∗n(s̃)

]
= 0. (3.6)

From (3.4), (3.5) and (3.6),

lim
n→∞

[
−

m∑
i=1

∫ 1

0
µn
i (t)

(
ai(t)

T x̄(t)dt+ s̄i(t)
)
dt− k∗n(x̄)− s∗n(s̄)

]
= lim

n→∞

[
−

m∑
i=1

∫ 1

0
µn
i (t)

(
ai(t)

T x̃(t) + s̃i(t)
)
dt− k∗n(x̃)− s∗n(s̃)

]
.

So, lim
n→∞

[
−k∗n(x̃) − s∗n(s̃)

]
= 0. Thus lim

n→∞
k∗n(x̃) = 0, lim

n→∞
s∗n(s̃) = 0. Thus S ⊂ Λ, where Λ is the

right hand side set of the set S in the result of this theorem.
The converse is true by Theorem 2.1. Consequently, the result holds. □

4. Conclusion

In this paper, we considered a linear fractional optimization problem involving integral functions
defined onCn[0, 1], which has a geometric constraint and inequality constraints and proved optimality
theorems for the problem which hold without any constraint qualification. Moreover, we characterized
the solution set for the problem in terms of sequential Lagrange multipliers of a known solution of the
problem. We can extend the results to more general fractional optimization problems involving integral
functions defined on Cn[0, 1].
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