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PARAMETRIC SUMMABILITY AND ITS APPLICATIONS TO MAXIMIZING OF THE
SUMMABILITY DOMAIN

JINLU LI1,∗ AND ROBERT MENDRIS1

1Department of Mathematics, Shawnee State University, 940 Second Street, Portsmouth, OH 45662, USA

Abstract. In this paper, we study parametric summability based on parameterized double sequences of
complex constants as it is defined in “Linear Operators, General Theory” by N. Dunford and J. T. Schwartz.
We define “power double sequences” or infinite “power matrices” as certain generalizations of double
sequences and power series. We show that the parameter dependence of the summability of power double
sequences is similar to convergence of power series and we introduce the radius of summability. That
opens a way to maximize the summability domain using the radius of summability. While others do
investigate “power matrices,” their definitions, as far as we were able to find, differ from ours. Using our
approach, we find new summability results for double sequences of constants in the case of power double
sequences. We will give some applications to both standard summability theory and analytic functions.
In section 7, we provide some examples to demonstrate the main results of this paper obtained in sections
5 and 6. Finally, to conclude this paper, in the last section, we give some ideas related to parametric
summability for further study.

Keywords. Parametric summability, General power matrices, Silverman-Toeplitz theorem, Radius of
summability.
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1. Introduction

The practical need to improve convergence gave the impulse to study sequence transformations al-
ready in 17th century and resulted in the creation of summability theory at the end of 19th century.
And the summability theory has been developed to be an important branch in the theory of analysis. It
has been developed and studied for a long-time history by many researchers (see [1, 3, 25, 7, 10, 12, 13,
14, 22, 26]). The summability theory has been applied to many subjects in the theory of analysis (see
[13, 14, 15, 22, 26]). The theme of the summability theory concentrates at the topics of convergent or
divergent of sequences and series (see [13, 14, 15, 18, 23]). Before the invention of computers, mainly
linear sequence transformations were studied. Approaches based on classical analysis culminated when
[13] was published. After those modern approaches based on functional analysis appeared. For a com-
prehensive review of classical and modern methods in summability (see [3]). From practical point of
view, regular linear transformations are in general at most moderately powerful in improving conver-
gence, and the popularity of most linear transformations has declined considerably in recent years. It
seems, however, that the limiting factor is regularity not linearity. Since there are different reasons
for transforming one sequence into another, then many researchers have studied infinite matrices and
summability methods for double series sequence spaces (see [4, 6, 11, 12, 16]). Recently also new pow-
erful non-linear sequence transformations attracted research and applications. This is discussed in a
nice historical review [25]. One more step further, when a random variable involves the convergence of
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a series, the statistical summability of double sequences or series has been rapidly developed by many
researches (see [2, 5, 8, 9, 10, 17, 19, 20, 21, 24]).

In this paper, we contribute to a new type of summability methods of parametric double sequences,
which we call a parametric summability.

This paper is organized as follows. In section 2, we review some concepts in the summability theory
and Silverman-Toeplitz Theorem. This is an important theorem in the summability theory, which will
be used in this paper; In sections 3 and 4 we introduce parametric double sequences; In section 5,
mainly by using the Silverman-Toeplitz theorem, we prove some summability results of parametric
double sequences; In section 6, we study the radius of Summability parametric double sequences and
provide some applications; In section 7, we give some applications of summability of parametric double
sequences to analytic functions and provided some examples.

2. Preliminaries

Let A = {aij}, i = 1, 2, . . . , j = 0, 1, 2, . . . , be a double sequence of complex constants, that is,

A =


a10 a11 a12 . . .
a20 a21 a22 . . .
a30 a31 a32 . . .
. . . . . . . . . . . .


Let ∆ be the set of all double sequences of complex constants and c be the space of all convergent

sequences of scalars.

Definition 2.1. Suppose that a double sequence {aij} defines a linear transformation T of c onto itself
by means of formula

T [s1, s2, . . .] = [t1, t2, . . .] = [
∞∑
j=0

a1jsj ,
∞∑
j=0

a2jsj , . . .].

If T preserves limits of sequences (i.e. if lim
i→∞

ti = lim
j→∞

sj for every sequence (or vector) [sj ] ∈ c), then

the double sequence (or matrix) A = {aij} is said to define a regular method of summability.

Lemma 2.2. A defines a bounded linear map of c into c, if and only if the following three conditions hold:

(1) lub
1≤i<∞

∞∑
j=0

|aij | = M < ∞;

(2) lim
i→∞

aij exists for j = 0, 1, 2, . . . . ;

(3) lim
i→∞

∞∑
j=0

aij exists.

Once A satisfies the above three conditions, for any column vector s = [s0, s1, s2, . . .] ∈ c, the
bounded linear map, A, of c into c is defined by

A(s)i = ai0 lim
j→∞

sj +
∞∑
j=1

aijsj , for i = 1, 2, . . . ,

where A(s) = [A(s)1, A(s)2, A(s)3, . . . ].

Let Bc denote the space of all linear bounded maps of c into c. From Lemma 2.2, if A ∈ Bc , then it
has norm

|A| = M.
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Theorem 2.3. (Silverman-Toeplitz) A defines a regular method of summability, if and only if the fol-
lowing three conditions hold:

(1) lub
1≤i<∞

∞∑
j=0

|aij | = M < ∞;

(2) lim
i→∞

aij = 0 for j = 0, 1, 2, . . . ;

(3) lim
i→∞

∞∑
j=0

aij = 1.

It is clear that if A defines a regular method of summability, then A ∈ Bc. One can find all, the
Definition, the Lemma, and Silverman-Toeplitz Theorem in [7].

One more step further, let A(z) = {fij(z)}, i = 1, 2, . . . , j = 0, 1, 2, . . . , be a double sequence of
functions with same domain D, which is a subset of complex numbers, that is,

A(z) =


f10(z) f11(z) f12(z) . . .
f20(z) f21(z) f22(z) . . .
f30(z) f31(z) f32(z) . . .
. . . . . . . . . . . .

 .

It is clear that for any input a ∈ D, the output of A(a) ∈ ∆. For any given a ∈ D we have the
following Lemma and Theorem.

Lemma 2.4. Let a ∈ D, then A(a) defines a bounded linear map of c into c, if and only if the following
three conditions hold:

(1) sub
1≤i<∞

∞∑
j=0

|fij(a)| = M < ∞;

(2) lim
i→∞

fij(a) exists for j = 0, 1, 2, . . . . ;

(3) lim
i→∞

∞∑
j=0

fij(a) exists.

Once A(a) satisfies the above three conditions, for any column vector s = [s1, s2, s3, . . .] ∈ c, the
bounded linear map, A(a), of c into c is defined by

A(a)(s)i = fi0(a) lim
j→∞

sj +
∞∑
j=1

fij(a)sj , for i = 1, 2, . . . ,

where A(a)(s) = [A(a)(s)1, A(a)(s)2, A(a)(s)3, . . . ].

Let Bc denote the space of all linear bounded maps of c into c. From Lemma 2.2, if A(a) ∈ Bc , then
it has norm

|A(a)| = M.

Theorem 2.5. (Silverman-Toeplitz) Let a ∈ D, then A(a) defines a regular method of summability, if
and only if the following three conditions hold:

(1) lub
1≤i<∞

∞∑
j=0

|fij(a)| = M < ∞;

(2) lim
i→∞

fij(a) = 0 for j = 0, 1, 2, . . . ;

(3) lim
i→∞

∞∑
j=0

fij(a) = 1.

Again, it is clear that if A(a) defines a regular method of summability, then A(a) ∈ Bc.
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3. Power Matrices

In this section, we consider special matrices of functions, in which every function fij(z) is a mono-
mial of z. Let A = { aij }, i = 1, 2, . . . , j = 0, 1, 2, . . . , be a double sequence of complex constants.

The column power matrix induced by A is defined as

PC
A (z) = {aijzi}, i = 1, 2, . . . , j = 0, 1, 2, . . . , that is,

PC
A (z) =


a10z a11z a12z . . .
a20z

2 a21z
2 a22z

2 . . .
a30z

3 a31z
3 a32z

3 . . .
. . . . . . . . . . . .

 .

The row power matrix induced by A is defined as

PR
A (z) = {aijzj}, i = 1, 2, . . . , j = 0, 1, 2, . . . , that is,

PR
A (z) =


a10 a11z a12z

2 . . .
a20 a21z a22z

2 . . .
a30 a31z a32z

2 . . .
. . . . . . . . . . . .

 .

The double power matrix induced from A is defined as

PA(z) = {aijzi+j}, i = 1, 2, . . . , j = 0, 1, 2, . . . , that is,

PA(z) =


a10z a11z

2 a12z
3 . . .

a20z
2 a21z

3 a22z
4 . . .

a30z
3 a31z

4 a32z
5 . . .

. . . . . . . . . . . .

 .

We will immediately generalize these definitions in the following section.

4. General Power Matrices

We will define power matrices of the first type now.

Definition 4.1. Let A = {aij}, i = 0, 1, 2, . . ., j = 0, 1, 2, . . ., be a double sequence of complex

constants. Let g(z) =
∞∑
i=0

giz
i be a complex power series. Denote its radius of convergence as Rg . The

column power matrix induced by A and associated with g(z) is defined as
PC
A;g(z) = {aijgizi}, i = 0, 1, 2, . . ., j = 0, 1, 2, . . . , that is,

PC
A;g(z) =


a00g0 a01g0 a02g0 . . .
a10g1z a11g1z a12g1z . . .
a20g2z

2 a21g2z
2 a22g2z

2 . . .
. . . . . . . . . . . .

 .
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Definition 4.2. Let A = {aij}, i = 0, 1, 2, . . ., j = 0, 1, 2, . . ., be a double sequence of complex

constants. Let h(z) =
∞∑
j=0

hjz
j be a complex power series. Denote its radius of convergence as Rh. The

row power matrix induced by A and associated with h(z) is defined as
PR
A;h(z) = {aijhjzj}, i = 0, 1, 2, . . ., j = 0, 1, 2, . . . :, that is,

PR
A;h(z) =


a00h0 a01h1z a02h2z

2 . . .
a10h0 a11h1z a12h2z

2 . . .
a20h0 a21h1z a22h2z

2 . . .
. . . . . . . . . . . .


We will generalize the double power matrix PA(z) now.

Definition 4.3. Let A = {aij}, i = 0, 1, 2, . . ., j = 0, 1, 2, . . ., be a double sequence of complex

constants. Let g(z) =
∞∑
i=0

giz
i be a complex power series. Denote its radius of convergence respectively

as rg . The power double sequence of second type induced by A and associated with g(z) is defined as
PA;g(z) = {aijgi+jz

i+j}, i = 0, 1, 2, . . ., j = 0, 1, 2, . . . :

PA;g(z) =


a00g0 a01g1z a02g2z

2 . . .
a10g1z a11g2z

2 a12g3z
3 . . .

a20g2z
2 a21g3z

3 a22g4z
4 . . .

. . . . . . . . . . . .


Definition 4.4. Let A = {aij}, i = 0, 1, 2, . . ., j = 0, 1, 2, . . ., be a double sequence of complex

constants. Let g(z) =
∞∑
i=0

giz
i and h(z) =

∞∑
j=0

hjz
j be two complex power series. Denote their radius

of convergence respectively as rg and rh. The power double sequence of third type induced by A and
associated with g(z) and h(z) is defined as

PA;g,h(z) = {aijgihjzi+j}, i = 0, 1, 2, . . ., j = 0, 1, 2, . . . :

PA;g,h(z) =


a00g0h0 a01g0h1z a02g0h2z

2 . . .
a10g1h0z a11g1h1z

2 a12g1h2z
3 . . .

a20g2h0z
2 a21g2h1z

3 a22g2h2z
4 . . .

. . . . . . . . . . . .


Remark 4.5. More general definition would consider [gi] and [hj ] to be two arbitrary number sequences.

5. Summability Results

For power double sequences of first type we have:

Proposition 5.1. Let the double sequence of complex constants {aij}, i = 0, 1, 2, . . ., j = 0, 1, 2, . . ., be

a regular method of summability and g(z) =
∞∑
i=0

giz
i be a complex power series. Then the following two

conditions are equivalent for any complex number z:
( i) lim

i→∞
giz

i = 1.

( ii) The power double sequence of first type
{(

PC
A;g(z)

)
ij

}
is a regular method of summability.
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Proof. (i) implies (ii) is a straightforward verification of the three conditions of Silverman-Toeplitz The-
orem (Theorem 2.3). (ii) implies (i). The condition (3) of Silverman-Toeplitz Theorem for PC

A;g and for
A gives (i). □

Proposition 5.2. Let the double sequence of complex constants {aij}, i = 0, 1, 2, . . ., j = 0, 1, 2, . . ., be

a regular method of summability and h(z) =
∞∑
j=0

hjz
j be a complex power series. Then the following two

conditions are equivalent for any complex number z, which the sequence [hizi] is convergent for:
( i) lim

j→∞
hjz

j = 1.

( ii) The power double sequence of first type
{(

PR
A;h(z)

)
ij

}
is a regular method of summability.

Proof. (i) implies (ii) is a straightforward verification of the three conditions of Silverman-Toeplitz The-
orem. (ii) implies (i). The condition (3) of Silverman-Toeplitz Theorem for PR

A;h and for A along with
the convergence of the sequence [hiz

i] gives (i) (see more details in the proof of (ii) implies (i) in the
Theorem 5.3 below). □

For power double sequences of second type we have:

Theorem 5.3. Let double sequence of complex constants {aij}, i = 0, 1, 2, . . ., j = 0, 1, 2, . . ., be a

regular method of summability and g(z) =
∞∑
i=0

giz
i be a complex power series. Then the following two

conditions are equivalent for any complex number z, which the sequence [gizi] is convergent for:
( i) lim

i→∞
giz

i = 1.

( ii) The power double sequence of second type
{
(PA;g(z))ij

}
is a regular method of summability.

Proof. Let’s show first that (ii) implies (i). From (ii) and condition (3) of Silverman-Toeplitz theorem,
we have
lim
i→∞

∞∑
j=0

aijgi+jz
i+j = 1. Set k = i + j. This changes into lim

i→∞

∞∑
k=i

ai,k−igkz
k = 1. Set bik = ai,k−i for

i ≤ k and zero otherwise. Observe {bik} is also a regular method of summability. Then by Silverman-
Toeplitz theorem the limits of convergent sequences are preserved: lim

k→∞
gkz

k = lim
i→∞

∞∑
k=0

bi,kgkz
k. But

the right hand side is equal to lim
i→∞

∞∑
k=i

ai,k−igkz
k = 1 and (i) immediately follows.

Now we show that (i) implies (ii). We will use Silverman-Toeplitz theorem again and we need to
prove its three conditions:

1. sup
0≤i<∞

∞∑
j=0

| (PA;g(z))ij | = sup
0≤i<∞

∞∑
j=0

|aijgi+jz
i+j | by the definition of PA;g .

Set k = i+ j. Then the above supremum is
sup

0≤i<∞

∞∑
k=i

|ai,k−igkz
k| ≤ sup

0≤i<∞

∞∑
k=i

|ai,k−i| · sup
0≤k<∞

|gkzk| < ∞

since the first supremum is finite by condition (1) of {aij} being a regular method of summability and
the second one by the existence of the limit in (i).

2. lim
i→∞

(PA;g(z))ij = lim
i→∞

aijgi+jz
i+j for j = 0, 1, 2, . . . by the definition.
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Set k = i + j. Then the absolute value of the above limit is
∣∣∣∣ lim
k→∞

ak−j,jgkz
k

∣∣∣∣ ≤ lim
k→∞

|ak−j,j | ·

lim
k→∞

∣∣gkzk∣∣ = 0 since the first limit is zero by condition (2) of {aij} being a regular method of summa-
bility and the second limit is 1 by (i).

3. lim
i→∞

∞∑
j=0

(PA;g(z))ij = lim
i→∞

∞∑
j=0

aijgi+jz
i+j by the definition.

Set k = i+ j. Starting with (i) following the fist part of this proof ((ii) implies (i)) backwards we have
1 = lim

k→∞
gkz

k = lim
i→∞

∞∑
k=0

bi,kgkz
k = lim

i→∞

∞∑
k=i

ai,k−igkz
k = lim

i→∞

∞∑
j=0

aijgi+jz
i+j .

And this finishes the proof that
{
(PA;g(z))ij

}
is a regular method of summability by Silverman-

Toeplitz theorem. □

Remark 5.4. The condition (i) in Theorem 5.3 implies |z| = rg , where rg is the radius of convergence.
The requirement in the Theorem 5.3 that the sequence [gizi]must be convergent seems to be too restric-
tive but the condition (ii) does not guarantee its convergence. There are examples of non-convergent
sequences [gizi] (for both bounded and unbounded case) and regular methods of summability that map
these sequences to convergent ones. Then by choosing z = 1 one has a counterexample for each case.

Corollary 5.5. 1. From the proof of the Theorem 5.3 it is clear that for |z| < rg , conditions 1. and 2. hold
but the limit in condition 3. is zero and we don’t get a regular method of summability in that case.

For power double sequences of third type we have:

Theorem 5.6. Let double sequence of complex constants {aij}, i = 0, 1, 2, . . ., j = 0, 1, 2, . . ., be a

regular method of summability, and g(z) =
∞∑
i=0

giz
i and h(z) =

∞∑
j=0

hjz
j be two complex power series. If

lim
i→∞

giz
i and lim

j→∞
hjz

j exist then the following two conditions are equivalent for any such complex number
z:

( i) lim
i→∞

giz
i · lim

j→∞
hjz

j = 1.

( ii) The power double sequence of second type
{
(PA;g,h(z))ij

}
is a regular method of summability.

Proof. The main structure of this proof is similar to the one of the Theorem 5.3 Let’s show first that (ii)
implies (i). From (ii) and condition (3) of Silverman-Toeplitz theorem, we have
1 = lim

i→∞

∞∑
j=0

aijgihjz
i+j . This equals to lim

i→∞
giz

i · lim
i→∞

∞∑
j=0

aijhjz
j = lim

i→∞
giz

i · lim
j→∞

hjz
j , where we also

used that {aij} as a linear operator preserves limits by Silverman-Toeplitz theorem.

Now we show that (i) implies (ii). We will use again Silverman-Toeplitz theorem and need to prove
its three conditions:

1. sup
0≤i<∞

∞∑
j=0

∣∣∣(PA;g,h(z))ij

∣∣∣ = sup
0≤i<∞

∞∑
j=0

∣∣aijgihjzi+j
∣∣ by the definition of PA;g,h.

The above supremum equals to
sup

0≤i<∞

∣∣gizi∣∣ · ∞∑
j=0

∣∣aijhjzj∣∣ ≤ sup
0≤i<∞

∞∑
j=0

|ai,j | · sup
0≤i<∞

∣∣gizi∣∣ · sup
0≤j<∞

∣∣hjzj∣∣ < ∞

since the first supremum is finite by condition (1) of {aij} being a regular method of summability and
the other two are finite by the existence of the limit in (i).
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2. lim
i→∞

(PA;g,h(z))ij = lim
i→∞

aijgihjz
i+j for j = 0, 1, 2, . . . by the definition.

The absolute value of the above limit is
∣∣∣∣hjzj · lim

i→∞
aijgiz

i

∣∣∣∣ ≤ sup
0≤i<∞

|ai,j | ·
∣∣∣∣hjzj · lim

i→∞
giz

i

∣∣∣∣ = 0 for

j = 0, 1, 2, . . .
since the first limit is zero by condition (2) of {aij} being a regular method of summability and the
second limit is finite by (i).

3. lim
i→∞

∞∑
j=0

(PA;g,h(z))ij = lim
i→∞

∞∑
j=0

aijgihjz
i+j by the definition.

Starting with (i) following the proof of necessary condition backwards we have:
1 = lim

i→∞
giz

i · lim
j→∞

hjz
j = lim

i→∞
giz

i · lim
i→∞

∞∑
j=0

aijhjz
j = lim

i→∞

∞∑
j=0

aijgihjz
i+j .

And this finishes the proof that
{
(PA;g,h(z))ij

}
is a regular method of summability by Silverman-

Toeplitz theorem. □

Remark 5.7. (i) implies |z| = rg = rh, where rg and rh are the radii of convergence of the respective
series. The requirement in the Theorem 5.6 that both sequences {gizi} and {hizi} must be convergent
seems to be too restrictive but the condition (ii) does not guarantee their convergence. There are ex-
amples of non-convergent sequences {gizi} and {hizi} and regular methods of summability that map
these sequences to convergent ones. Then again by choosing z = 1 one has a counterexample for each
case.

Corollary 5.8. 2. From the proof it is clear that for |z| < rg and |z| < rh, conditions 1. and 2. hold but
the limit in 3. is zero and we don’t get a regular method of summability in that case.

6. Radius of Summability and its Applications

Assume A ∈ Bc now, but not necessarily a regular method of summability. It is clear that PR
A;h(0) ∈

Bc and PR
A;h(1) ∈ Bc. Also A = PC

A;g(1) ∈ Bc. On the other hand, for a given z we can ask: Does
PC
A;g(z) ∈ Bc or PR

A;h(z) ∈ Bc hold? And because the conditions (1) and (2) clearly hold this is
equivalent to: Does

lim
i→∞

∞∑
j=0

aijgiz
i or lim

i→∞

∞∑
j=0

aijhjz
j exist?

The next propositions provide an answer for these two kinds of power matrices. For power double
sequences of first type we have:

Proposition 6.1. Let A = { aij }, i = 1, 2, . . . , j = 0, 1, 2, . . . , be a double sequence of complex scalars
satisfying A ∈ Bc. If PC

A;g(a) ∈ Bc, for some a ̸= 0, then PC
A;g(z) ∈ Bc, for all z satisfying |z| < |a|.

Proof. It is a straightforward verification of Silverman-Toeplitz Theorem conditions. □

Proposition 6.2. Let A = { aij }, i = 1, 2, . . . , j = 0, 1, 2, . . . , be a double sequence of complex scalars
satisfying A ∈ Bc. If PR

A;h(a) ∈ Bc, for some a ̸= 0, then PR
A;h(z) ∈ Bc, for all z satisfying |z| < |a|.

Proof. From the above argument, we have PR
A (0) ∈ Bc. We only need to prove PR

A (z) ∈ Bc, for all
|z| < |a| and z ̸= 0. From the hypothesis PR

A (a) ∈ Bc, we have
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(1) sup
1≤i<∞

∞∑
j=0

|aijaj | = M < ∞;

(2) lim
i→∞

aija
j exists for j = 1, 2, . . . ;

(3) lim
i→∞

∞∑
j=0

aija
j exists.

We have to show
(1) sup

1≤i<∞

∞∑
j=0

|aijzj | < ∞;

(2) lim
i→∞

aijz
j exists for j = 1, 2, . . . ;

(3) lim
i→∞

∞∑
j=0

aijz
j exists.

In fact, from condition (1) for PR
A (a) , we obtain

sup
1≤i<∞

∞∑
j=0

|aijzj | = sup
1≤i<∞

∞∑
j=0

|aijaj |
∣∣∣z
a

∣∣∣j ≤ sup
1≤i<∞

∞∑
j=0

|aijaj | = M < ∞.

So PR
A (z) satisfies its condition (a). Similarly, from the condition (2) of PR

A (a) , we have

lim
i→∞

aijz
j = lim

i→∞
aija

j
(z
a

)j
= 0, forj = 1, 2, . . . .

So PR
A (z) satisfies its condition (b). Next we show that PR

A (z) satisfies its condition (c) from Lemma
2.2
For any given ε > 0, there exists N, such that | za |

N−1 < ε
4M . From conditions (1) and (2) above, there

exists K > 0 such that for all m, n > K , the following inequality holds

|amja
j − anja

j | < ε

2N
.

Now for all m,n > K , we have∣∣∣∣∣∣
∞∑
j=0

amjz
j −

∞∑
j=0

anjz
j

∣∣∣∣∣∣ ≦
≦

∣∣∣∣∣∣
N−1∑
j=0

amjz
j −

N−1∑
j=0

anjz
j

∣∣∣∣∣∣+
∣∣∣∣∣∣

∞∑
j=N

amjz
j −

∞∑
j=N

anjz
j

∣∣∣∣∣∣
≦

N−1∑
j=0

|amja
j − anja

j |
∣∣∣z
a

∣∣∣j +
∣∣∣z
a

∣∣∣N−1

 ∞∑
j=N

|amja
j |
∣∣∣z
a

∣∣∣j−N+1
+

∞∑
j=N

|anjaj |
∣∣∣z
a

∣∣∣j−N+1


≦

N−1∑
j=0

|amja
j − anja

j |+
∣∣∣z
a

∣∣∣N−1

 ∞∑
j=N

|amja
j |+

∞∑
j=N

|anjaj |


<

Nε

2N
+

ε

4M
(M +M)

= ε.
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This proposition is proved. □

Proposition 6.2 indicates that, the row power matrix PR
A (z) has a similar property to power series:

If there exists a number a ̸= 0, such that PR
A (a) ∈ Bc, then there exists a positive number rA such that,

PR
A (z) ∈ Bc, for all |z| < rA, and PR

A (z) /∈ Bc, for all |z| > rA. rA is called the radius of summability
of the matrix A. The radius of summability of the matrix A is 0, if there does not exist a number a ̸= 0,
such that PR

A (a) ∈ Bc; The radius of summability of the matrix A is ∞, if PR
A (a) ∈ Bc for all numbers

a.
We will show below that this radius of summability exists also for double sequences of second and

third type.

The following corollary follows immediately from Proposition 6.2 and the above notations.

Corollary 6.3. 3. Let A = { aij }, i = 1, 2, . . . , j = 0, 1, 2, . . . , be a double sequence of complex scalars. If
A ∈ Bc then rA ≥ 1.

For any given row power matrix PR
A (z) , the entries of any fixed row, i, can be treated as the terms

of a power series
∞∑
j=0

aijz
j

Its radius of convergence is denoted by riA , for i = 1, 2, . . . .

Proposition 6.4. rA ≦ inf
1≤i<∞

riA.

Proof. For any given |z| < rA , PR
A (z) ∈ Bc, we have lim

i→∞

∞∑
j=0

aijz
j exists. The series

∞∑
j=0

aijz
j is con-

vergent, for i = 1, 2, ... . It implies that |z| ≦ riA , for i = 1, 2, . . . . It completes the proof of this
proposition. □

For power double sequences of second type we have:

Proposition 6.5. Let {aij}, i = 0, 1, 2, . . ., j = 0, 1, 2, . . ., be a double sequence of complex scalars and
g a complex power series.

If PA;g(a) ∈ Bc, for some a ̸= 0, then PA;g(z) ∈ Bc, for all z satisfying |z| < |a|.

Proof. It is clear that PA;g(0) ∈ Bc and we only need to prove PA;g(z) ∈ Bc, for all 0 < |z| < |a|.
From the hypothesis PA;g(a) ∈ Bc, we have

(a) sup
0≤i<∞

∞∑
j=0

|aijgi+ja
i+j | = M < ∞;

(b) lim
i→∞

aijgi+ja
i+j exists for j = 1, 2, . . . ;

(c) lim
i→∞

∞∑
j=0

aijgi+ja
i+j exists.

We have to show that the above three conditions are also true for PA;g(z):

(a) sup
0≤i<∞

∞∑
j=0

|aijgi+jz
i+j | < ∞;

(b) lim
i→∞

aijgi+jz
i+j exists for j = 0,1,2, . . . ;
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(c) lim
i→∞

∞∑
j=0

aijgi+jz
i+j exists.

In fact, from the condition (a) for PA;g(a) , we obtain

sup
0≤i<∞

∞∑
j=0

|aijgi+jz
i+j | = sup

0≤i<∞

∞∑
j=0

|aijgi+ja
i+j |

∣∣∣z
a

∣∣∣i+j

≤ sup
0≤i<∞

∞∑
j=0

|aijgi+ja
i+j | = M < ∞

So PA;g(z) satisfies its condition (a). Similarly, from the condition (b) of PA;g(a) , we have

lim
i→∞

aijgi+jz
i+j = lim

i→∞
aijgi+ja

i+j
(z
a

)i+j
= 0, forj = 0, 1, 2, . . .

So PA;g(z) satisfies its condition (b). Next we show that PA;g(z) satisfies its condition (c).
For any given ε > 0, there exists N, such that | za |

N−1 < ε
4M . From conditions (a) and (b) above, where

we set k = i + j, there exists K > 0 such that | za |
K < ε

4MN and for all m, n > K , the following
inequalities hold (without loss of generality m < n)

∞∑
j=0

|am−j,jgmam| < M,

∞∑
j=0

|an−j,jgna
n| < M,

|am−j,jgmam − an−j,jgna
n| < ε

4N
.

Now for all m, n > K , we have

∣∣∣∣∣∣
∞∑
j=0

am−j,jgmzm −
∞∑
j=0

an−j,jgnz
n

∣∣∣∣∣∣ ≦
≦

∣∣∣∣∣∣
N−1∑
j=0

am−j,jgmzm −
N−1∑
j=0

an−j,jgnz
n

∣∣∣∣∣∣+
∣∣∣∣∣∣

∞∑
j=N

am−j,jgmzm −
∞∑

j=N

an−j,jgnz
n

∣∣∣∣∣∣
≦

N−1∑
j=0

∣∣∣am−j,jgmam
∣∣∣z
a

∣∣∣m − an−j,jgna
n
∣∣∣z
a

∣∣∣n∣∣∣+
∣∣∣z
a

∣∣∣N−1

 ∞∑
j=N

|am−j,jgmam|
∣∣∣z
a

∣∣∣m−N+1
+

∞∑
j=N

|an−j,jgna
n|
∣∣∣z
a

∣∣∣n−N+1


≦

N−1∑
j=0

(
|am−j,jgmam − an−j,jgna

n| ·
∣∣∣z
a

∣∣∣m + |an−j,jgna
n| · (1−

∣∣∣z
a

∣∣∣n−m
) ·

∣∣∣z
a

∣∣∣m)
+

∣∣∣z
a

∣∣∣N−1

 ∞∑
j=N

|am−j,jgmam|+
∞∑

j=N

|an−j,jgna
n|


<

Nε

4N
+NM

ε

4MN
+

ε

4M
(M +M)

= ε.

This proposition is proved. □
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For power double sequences of third type we have:

Proposition 6.6. Let {aij}, i = 0, 1, 2, . . ., j = 0, 1, 2, . . ., be a double sequence of complex scalars and
g, h complex power series. If PA;g,h(a) ∈ Bc, for some a ̸= 0, then PA;g,h(z) ∈ Bc, for all z satisfying
|z| < |a|.

Proof. This proof is very similar to the one of the Proposition 6.5 above and will be omitted. □

Remark 6.7. Propositions 6.5 and 6.6 might seem to generalize the Proposition 6.1 or Proposition 6.2
but they don’t. We cannot write PR

A (z) nor PC
A (z) in the form of PA;g or PA;g,h. But we can do so for

PA(z) by choosing gi = 1 or gi = hi = 1 respectively.
Obviously PA;g(0) ∈ Bc, A = PA;g(1) ∈ Bc, PA;g,h(0) ∈ Bc, and A = PA;g,h(1) ∈ Bc. Then for

these power matrices rA ≥ 1.

7. Applications to Analytic Functions and Examples

Proposition 7.1. Let f(z) be an analytic function with power series expansion
∞∑
k=0

pkz
k about point 0

with the radius of convergence r > 1. Then, for any s = [sk] = [s1, s2, s3, . . .] ∈ c and for any |z| < r,

the sequence [
n∑

k=0

pksk+1z
k], n = 1, 2, . . . , is also convergent.

Proof. Define A = { aij }, i = 1, 2, 3, . . . , j = 0, 1, 2, . . . , as follows:

aij =

{
pj , j < i
0, j ≥ i

Then A and A(z) have the following properties:

(a) A ∈ Bc, with M =
∞∑
k=0

pk;

(b) riA = ∞, for i = 1, 2, . . . ;
(c) rA = r;
(d) A(z) ∈ Bc .

And the proposition follows from the property (d). □

For the following examples, one can check the conditions listed.

Example 7.2. Let A = {i + j}, i = 1, 2, . . . , j = 0, 1, 2, . . . :
(a) A /∈ Bc;
(b) riA = 1, for i = 1, 2, . . . ;
(c) rA = 1.

Example 7.3. Let A = { 1
i+j }, i = 1, 2, . . . , j = 0, 1, 2, . . . :

(a) A /∈ Bc;
(b) riA = 1, for i = 1, 2, . . . ;
(c) rA = 1.

Example 7.4. Let A = { (i+ j)! }, i = 1, 2, . . . , j = 0, 1, 2, . . . :
(a) A /∈ Bc;
(b) riA = 0, for i = 1, 2, . . . ;
(c) rA = 0.

Example 7.5. Let A = { 1
(i+j)! }, i = 1, 2, . . . , j = 0, 1, 2, . . . :
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(a) A ∈ Bc, with M =
∞∑

j= 0

1
j! ;

(b) riA = ∞, for i = 1, 2, . . . ;
(c) rA = ∞.

Example 7.6. For a given b > 0, let A = { bi+j }, i = 1, 2, . . . , j = 0, 1, 2, . . . :
(a) A ∈ Bc, if b ¡ 1, with M = 1

1−b , and A /∈ Bc , if b ≥ 1;
(b) riA = b−1 , for i = 1, 2, . . . ;
(c) rA = b−1 .

Example 7.7. Let [pk] be a sequence of positive numbers satisfying
∞∑
k=1

pk < ∞, and let Pi =
i∑

k=1

pk.

Define A = aij , i = 1, 2, ..., j = 0, 1, 2, ..., as follows

aij =

{ 1
Pi
, j < i

0, j ≥ i
:

(a) A ∈ Bc, with M = 1
p1

;
(b) riA = ∞, for i = 1, 2, . . . ;
(c) rA = 1;
(d) A is not a regular method of summability.

Example 7.8. Let [pk] be a sequence of positive numbers satisfying
∞∑
k=1

pk = ∞, and let Pi =
i∑

k=1

pk.

Define A = aij , as in Example 7.7 Then:
(a) A ∈ Bc, with M = 1

p1
;

(b) riA = ∞, for i = 1, 2, . . . ;
(c) rA = sup{b > 0 : lim

i→∞
bi

Pi
exists} < ∞;

(d) A is a regular method of summability.

8. Conclusion

In this paper, we introduced the concept of parametric summability for parameterized double se-
quences. We proved some results of parametric summability and radius of summability of some pa-
rameterized double sequences. We also gave some applications of parametric summability of param-
eterized to standard summability theory and analytic functions. Several examples were provided to
demonstrate the main results of this paper.

We have some ideas to extend the parametric summability for the further study.

1. In section 4 of this paper, we studied the radius of summability of some parameterized double
sequences. By the same ideas, we may consider the “convergent speed” of a given parameterized double
sequence.

2. Let (X, ∥·∥) and (Y, ∥·∥) be a real Banach spaces. Suppose that bothX and Y have Schauder bases
{en} and {dn}, respectively. Let T : X → Y be a linear and continuous (bounded) mapping. Then,
there is a real infinite matrix A = (ai,j), with i, j = 0, 1, 2, .... a double sequence of real constants,
such that, for any x =

∑∞
n=0 anen, we have

Tx =
∑∞

n=0 anTen

=
∑∞

n=0 an(
∑∞

j=0 an,jdj)

=
∑∞

j=0(
∑∞

n=0 anan,j)dj .
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Then, by the fact that the linear and continuous (bounded) mapping T : X → Y is induced by the real
infinite matrix A = (ai,j), we may study the parameterized linear and continuous (bounded) mappings
from X and Y:

(i) TC : X → Y that is induced by the column power matrix (ai,jz
i)

(ii) TR : X → Y that is induced by the row power matrix (ai,jz
j)

3. What is the connection between the norms of TC , TR and the norm of T ?
4. What is the radius rC of the linear and continuous mapping TC : X → Y ? More precisely, we

want to find rC such that, if |z| < rC , then for any x =
∑∞

n=0 anen, we have TCx ∈ Y such that

TCx =
∑∞

n=0 anT
Cen

=
∑∞

n=0 an(
∑∞

j=0 an,jz
ndj)

=
∑∞

j=0(
∑∞

n=0 anan,jz
n)dj .

5. What is the radius rR of the linear and continuous mapping TC : X → Y ? More precisely, we
want to find rR such that, if |z| < rR, then for any x =

∑∞
n=0 anen, we have TRx ∈ Y such that

TRx =
∑∞

n=0 anT
Ren

=
∑∞

n=0 an(
∑∞

j=0 an,jz
jdj)

=
∑∞

j=0(
∑∞

n=0 anan,jz
j)dj .

6. What is the connection between the radius rC and the radius rR?

7. Let (H, ∥ · ∥) and (K, ∥ · ∥) be real Hilbert spaces. Suppose that both H and K have orthonormal
bases. One may consider here the same questions as above from number 2 to number 6 about linear
and continuous (bounded) mappings from H to K .

Statements and Declarations

The authors declare that they have no conflict of interest, and the manuscript has no associated data.

Acknowledgments

Both authors thank to Shawnee State University for support. We haven’t received any grants or any
other funding for this work.

References
[1] S. A. Baron. Introduction to the Theory of Summability of Series (In Russian), Izd. Tartusk. University, Tartu, 1966.
[2] C. Belen, M. Mursaleen, and M. Yildirim. Statistical A-summability of double sequences and a Korovkin type approxi-

mation theorem. Bulletin of the Korean Mathematical Society, 49(4):851–861, 2012.
[3] J. Boos. Classical and Modern Methods in Summability. Oxford University Press, New York, 2000.
[4] V. G. Chelidze. Summability Methods for Double Series and Double Integrals. Tbilisi University Press, Tbilisi, 1977.
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