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ABOUT DC AND SPLIT COMPOSITE MINIMIZATION PROBLEMS
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Abstract. The aim of this paper is twofold. Firstly, to prove the linear convergence of a linearized prox-
imal algorithm for solving DC composite optimization problems under suitable assumptions. In the DC
optimization setting, this sharpens recent results. Secondly, to sketch out some ideas for solving split
convex composite minimization problems by means of an alternative formulation based on a generaliza-
tion of an infimal post-composition approach developed very recently. This will most probably rely on a
conjugacy and subdifferential calculus for convex convex-composite functions in finite-dimensional space
even in infinite dimensional spaces together very possibly with new notions. The goal is to move from
an approach based on the composition of a convex function by a linear operator to a composition by a
suitable map.
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1. Introduction and Preliminaries

We are interested first in the following classe of composite minimization problems

min
x∈IRd

φ(x) := f(x)− g(c(x)), (1.1)

where f : IRd → IR ∪ {+∞}, g : IRm → IR ∪ {+∞} are closed convex functions and c : IRd → IRm

is a smooth map.
Regularized nonlinear least squares and exact penalty formulations of nonlinear programs are clas-

sical examples, while notable contemporary instances include robust phase retrieval and matrix factor-
ization problems. The setting where c is the identity function, (1.1) reduces to

min
x∈IRd

φ(x) := f(x)− g(x), (1.2)

which is nothing else than DC minimization (minimization of a difference of two convex functions that
use convex properties of the two convex functions separately) which is now common place in large-
scale optimization. The DCA investigated by Tao [16], is a popular algorithm for DC minimization and a
proximal point algorithm was proposed in [15]. Moudafi and Maingé [10] proposed an alternative proof
of the main result in [15] with some extensions and a proximal linearized algorithm for minimizing DC
functions was then proposed in [14]. DC optimization algorithms have been proved to be particularly
successful for analyzing and solving a variety of highly structured and practical problems.

Our goal in [9] was centered around prox-linear methods and shares the same idea, namely, the
linearization the component g(·) or c(·); or both, which we proposed to extend to the entire problem
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classes (1.1). We proved that every cluster point of the sequence generated by our method for minimiz-
ing composite DC functions is a critical point. In each iteration of (1.3), the prox-linear method solves
the following proximal subproblem: given an initial point x0 ∈ domφ and a sequence of positive pa-
rameters (λk)k∈IN such that lim inf

k→+∞
λk > 0. calculate (wk)k∈IN and compute (xk)k∈IN by

{
wk ∈ ∇c(xk)∗∂g(c(xk));
xk+1 = argminx∈IRd

(
f(x)− ⟨wk, x− xk⟩+ 1

2λk
∥x− xk∥2

)
.

(1.3)

If xk+1 = xk, stop. Otherwise, set k := k + 1 and return the first step.
Note that if c is the identity function, then Algorithm (1.3) becomes exactly the linearized proximal point
algorithm introduced in [14] for DC functions. The setting where g is the null function, Algorithm (1.3)
is nothing else than the classical proximal point algorithm. The underlying assumption here is that the
proximal subproblems can be solved efficiently.

In [9], we proved that the proposed algorithm provides a descent method and that every cluster point
is a critical point of the functions under consideration provided that the boundedness of the sequences
generated by the algorithm, see [9]-Theorem 3.3. In section 2, we will complete the convergence analysis
by providing a linear convergence result under suitable assumptions.

On the other hand, remember that convex-composite optimization is a class of nonsmooth, non-
convex optimization problems that captures a wide variety of optimization models studied in modern
optimization practice and theory including nonlinear programming, nonconvex minimax problems,
nonconvex system identification, inverse problems and nonlinear filtering as well as most nonconvex
problems in large-scale data analysis and machine learning, see [6], [7]. That is why in ection 3, we are
interested in the following classe of composite optimization problems

min
x∈IRd

ψ(x) := f(x) + g(c(x)), (1.4)

where g : IRm → IR∪{+∞} and f : IRd → IR∪{+∞} are closed convex functions and c : IRd → IRm

is a continuous map.
The function g encodes the modelling framework such as an nonlinear programming or an inverse

problem and the function f is a regularizer used to induce further properties on the solution such as
sparsity, smoothness, or a domain restriction. The function c is the functional data associated with a
specific instance of the problem.

Recently there has been a resurgence of interest in the foundations of this problem class due to its
importance for many problems in modern optimization, machine learning, and large scale data analysis
with major contributions could be found in [2, 5, 8] and references therein. In order to go to the essential
informations to share, we assume the reader has some basic knowledge of convex analysis as can be
found, for example, in [13].

Throughout section 2, we will assume that the original function φ is bounded below. As it is well
known that a necessary condition for x ∈ domφ to be a local minimizer of φ is in general hard to be
reached, so, we will focus our attention on finding critical points of φ.

Before stating the definition of critical points, given a convex function φ : IRd → IR∪{+∞}, recall
that a vector v is called a subgradient of φ at a point x ∈ domφ if the inequality

φ(y) ≥ φ(x) + ⟨v, y − x⟩ ∀y ∈ IRd.

The set of all subgradients of φ at x is denoted by ∂φ(x), and is called the subdifferential of φ at x.
For any point x /∈ domφ , we define ∂φ(x) to be the empty set. For any closed function φ, its Frechét
subdifferential at x, ∂̂φ(x), is the collection of vectors v such that

φ(y) ≥ φ(x) + ⟨v, y − x⟩+ o(∥y − x∥) ∀y ∈ IRd.
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Unfortunately, ∂̂φ can be empty at certain points ever for Lipschitz continuous functions. To avoid this
degeneracy, we arrive to the limiting subdifferential, ∂φ, defined as

v ∈ ∂φ(x) ⇔ ∃xk → x, φ(xk) → φ(x), vk ∈ ∂̂φ(xk), vk → v.

Clearly, ∂̂φ(x) ⊂ ∂φ(x) for all x. It is known that the above subdifferential reduces to the classical
subdifferential in convex analysis when φ is convex. In addition, if φ is continuously differentiable,
then the limiting subdifferential reduces to the gradient, ∇φ, of the function φ. From the definition, it
follows that if x̄ is a local minimizer, then 0 ∈ ∂̂φ(x̄) and 0 ∈ ∂φ(x̄), which generalizes the familiar
Fermat’s rule. The latter condition is in general hard to be reached and we relax it to the following
notion of critical point. Throughout, we also assume that the chain rule can be applied when needed
which is always the case via qualification conditions as Ndomg(c(x̄)) ∩ Ker(∇c(x̄)∗) = {0}, Ndomg

being the normal cone to domg or even better like IR+

(
domg− c(x̄)

)
−∇c(x̄)(IRm) = IRd are always

satisfied, see [11].

Definition 1.1. We will say that x̄ ∈ IRd is a critical point of φ in (1.1) if

∂f(x̄) ∩∇c(x̄)∗∂g(c(x̄)) ̸= ∅. (1.5)

Throughout section 2, Γ will denote the critical points set of the function φ.

2. Linear Convergence of a Proximal Linear Method

Throughout this section, we make the following assumptions on the functional components of the
problem: f : IRd → IR∪{+∞} is a proper, closed, convex function, g : IRm → IR∪{+∞} is a convex
differentiable function with a L-Lipschitz continuous gradient, i.e.,

∥∇g(x)−∇g(y)∥ ≤ L∥x− y∥ ∀x, y ∈ IRm

and c : IRd → IRm is a C1-smooth mapping with a β-Lipschitz continuous Jacobian map

∥∇c(x)−∇c(y)∥ ≤ β∥x− y∥ ∀x, y ∈ IRd.

The proposed algorithm look for critical points of f := g−h◦c by constructing two sequences (xk)k∈IN
and (wk)k∈IN by the following rules{

wk ∈ ∇c(xk)∗∂g(c(xk));
xk+1 = argminx∈IRd

(
f(x)− ⟨wk, x− xk⟩+ 1

2λk
∥x− xk∥2

)
.

(2.1)

We showed in [9] that (2.1) is a descent method, that the sequence φ(xk)k∈IN is convergent and that
the sequence (xk)k∈IN is asymptotically regular, namely lim

k→+∞
∥xk+1 − xk∥ = 0. We proved also, [9]-

Theorem 3.3, that every cluster-point x̄ of (xk)k∈IN is a critical point of the function φ provided that
the sequence (xk)k∈IN is bounded.

Here, we are interested in the case where φ is a DC function with h differentiable and ∇c bounded
which is the case in the classical case of composite functions with linear operators.

Theorem 2.1. Suppose that f is a strongly convex function (with constant ρ > 0), g a differantiable
function with Lipschitz continuous gradient (with constant L > 0) and there exists a positive real γ such
that supx ∥∇c(x)∥ ≤ γ. If ρ > κ

2 , then there exists a constant 0 < r < 1 such that

∥xk+1 − x̄∥ ≤ r∥xk − x̄∥ ∀x̄ ∈ Γ. (2.2)

Therefore, the whole sequence (xk)k∈IN converges linearly to a point x̄ ∈ Γ.
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Proof. According again to (2.1) together with the subdifferential chain rule, we can write

wk +
xk − xk+1

λk
∈ ∂f(xk+1) wk = ∇c(xk)∗yk with yk = ∇g(c(xk)). (2.3)

Let x̄ ∈ Γ be a critical point of f , namely,

w̄ ∈ ∂f(x̄) w̄ = ∇c(x̄)∗ȳ with ȳ = ∇g(c(x̄)). (2.4)

By strongly monotonicity of g, (2.3) and (2.4), we have

0 ≤ ⟨wk − w̄ +
xk−xk+1

λk
, xk+1 − x̄⟩ − ρ∥xk+1 − x̄∥2

= ⟨wk − w̄, xk+1 − x̄⟩+ 1
λk
⟨xk − xk+1, xk+1 − x̄⟩ − ρ∥xk+1 − x̄∥2.

Having in mind that there exists a positive real γ such that supx ∥∇c(x)∥ ≤ γ, using both the Cauchy-
Schwarz inequality and the mean value theorem together with both Lipschitz continuity of ∇g and ∇c,
we successively have

⟨wk − w̄, xk+1 − x̄⟩ = ⟨∇c(xk)∗yk −∇c(x̄)∗ȳ, xk+1 − x̄⟩
≤ ∥∇c(xk)∗yk −∇c(x̄)∗ȳ∥∥xk+1 − x̄∥
≤

(
∥∇c(xk)∗∥∥yk − ȳ∥+ ∥ȳ∥∥∇c(xk)∗ −∇c(x̄)∗∥

)
∥xk+1 − x̄∥

≤
(
L∥∇c(xk)∗∥∥c(xk)− c(x̄)∥+ β∥ȳ∥∥xk − x̄∥

)
∥xk+1 − x̄∥

≤
(
γ2L+ β∥∇g(c(x̄))∥

)
∥xk − x̄∥∥xk+1 − x̄∥.

In view of the identity ⟨xk − xk+1, xk+1 − x̄⟩ = ∥xk − x̄∥2 −∥xk+1 − x̄∥2 −∥xk+1 − xk∥2, by setting
κ =

(
γ2L+ β∥∇g(c(x̄))∥

)
, we can write

0 ≤ 2λkκ∥xk − x̄∥∥xk+1 − x̄∥ − ∥xk+1 − x̄∥2 − ∥xk+1 − xk∥2
+ ∥xk − x̄∥2 − 2λkρ∥xk+1 − x̄∥2

≤ λkκ(∥xk − x̄∥2 + ∥xk+1 − x̄∥2)− ∥xk+1 − x̄∥2 − ∥xk+1 − xk∥2
+ ∥xk − x̄∥2 − 2λkρ∥xk+1 − x̄∥2

= (1 + λkκ)∥xk − x̄∥2 −
(
1 + λk(2ρ− κ)

)
∥xk+1 − x̄∥2 − ∥xk+1 − xk∥2.

It follows that (
1 + λk(2ρ− κ)

)
∥xk+1 − x̄∥2 ≤ (1 + λkκ)∥xk − x̄∥2,

which complete the proof by setting 0 < r :=
√

1+λkκ
1+λk(2ρ−κ) < 1 and by virtue of [9]-Theorem 3.3

together with [12]-Opial’s Lemma. □

If c is the identity function, then Algorithm (1.3) reduces to the linearized proximal point algorithm
introduced in [14] for DC functions and we retrieve their main Theorem 3 with a weaker condition on
the strong convexity modulus. We foresee further progress in this topics in the near future beginning
with global and Linear convergences of the sequences (1.3) under suitable additional assumptions such
as Kurdyka-Lojasiewicz property, which is satisfied by a wide variety of functions such as proper closed
semi algebraic functions, and plays an important role in the convergence analysis of many first-order
methods.

3. New on Split Convex Composite Minimization

Convex composite optimization is a class of nonsmooth, nonconvex optimization problems that cap-
tures a wide variety of optimization models studied in modern optimization practice and theory includ-
ing nonlinear programming, nonconvex minimax problems, nonconvex system identification, inverse
problems and nonlinear filtering as well as most nonconvex problems in large-scale data analysis and
machine learning, see for example [6] and [7].
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In this section, we are interested in the following class of composite optimization problems
min
x∈IRd

f(x) + g(c(x)), (3.1)

where g : IRm → IR∪{+∞} and f : IRd → IR∪{+∞} are closed convex functions and c : IRd → IRm

is a given map.
Our goal is to propose an alternative formulation that relies on an infimal post-composition.

To begin with, let us introduce the following notion,

Definition 3.1. Given f : IRd → IR ∪ {+∞} and a map c : IRd → IRm, the infimal post-composition
of f by c is defined by

c ▷ f : IRm → IR ∪ {+∞} : u 7→ inf
x∈IRd;c(x)=u

f(x). (3.2)

c ▷ f being exact at u ∈ IRm, if argminx∈IRd;c(x)=u f(x) ̸= ∅. Note that dom(c ▷ f) ⊂ ran(c).

Relying on this notion, we provide in what follows an alternative formulation of (3.3).
Problem. Let f : IRd → IR ∪ {+∞} be a proper convex lower semicontinuous function, and let
c : IRd → IRm be a given map, we consider the problems

inf
x∈IRd

f(x) + g(c(x)), (3.3)

and
inf

u∈IRm
g(u) + (c ▷ f)(u). (3.4)

The solution sets of (3.3) and (3.4) will be denoted by S((3.3)) and S((3.4)), respectively.
The following proposition gives a connection between problems (3.3) and (3.4).

Proposition 3.2. The following statements hold true
(i) infx∈IRd f(x) + g(c(x)) = infu∈IRm g(u) + (c ▷ f)(u).

(ii) Suppose that x̄ ∈ S((3.3)), then c(x̄) ∈ S((3.4)).
(iii) Suppose that ū ∈ S((3.4)), then argminx∈IRd;c(x)=ū f(x) ⊂ S((3.3)).

Proof. (i)
infu∈IRm g(u) + (c ▷ f)(u) = infu∈IRm

(
g(u) + infx∈IRd;c(x)=u f(x)

)
= infx∈IRd

(
f(x) + infu∈IRm;c(x)=u g(u)

)
= infx∈Rd

(
f(x) + g(c(x))

)
.

(ii) Suppose x̄ ∈ S((3.3)), we successively have,
f(x̄) + g(c(x̄)) = infx∈IRd

(
f(x) + g(c(x))

)
= infu∈IRm g(u) + (c ▷ f)(u)

≤ g(c(x̄)) + (c ▷ f)(c(x̄))

= g(c(x̄)) + f(c(x̄)).

Which leads to
g(c(x̄)) + (c ▷ f)(c(x̄)) = min

u∈IRm
g(u) + (c ▷ f)(u),

in other words ū = c(x̄) is a solution of (3.4).
(iii) Suppose ū ∈ S((3.4)) and let x̄ such that c(x̄) = ū and f(x̄) = (c ▷ f)(ū). Using (i), we can write

f(x̄) + g(c(x̄)) = g(ū) + (c ▷ f)(ū)

= minu∈IRm g(u) + (c ▷ f)(u)

= infx∈IRd

(
f(x) + g(c(x))

)
.
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from which we infer that any element argminx∈IRd;c(x)=ū f(x) solves (3.3). □

Solving the alternative formulation of (3.3) by means of proximal splitting algorithms needs the
computation of the proximal mapping of infimal post-composition c▷f . This does not of course preclude
the possibility of solving (3.4) using other algorithms. But, if we want to follow exactly the approach
developed in [3], c ▷ f must be proper, convex and lower semicontinuous. Note that in the case when
c = L a linear operator, the key properties have been found by means of the notion of conjugate
and especially the nice formula (L ▷ f)∗ = f∗ ◦ L∗ see [1]. To that end, we could define, for every
f : IRd → IR ∪ {+∞} and a map c : IRd →Rm, the following similar notions

f∗c (u) = sup
x∈IRd

(⟨c(x), u⟩ − f(x)) and proxc,f (u) = inf
x∈IRd

(f(x) +
1

2
∥c(x)− u∥2),

and use the analysis developed in [4] even [2]. Indeed in [4] was studied the case where the com-
position is convex. The convex-composite setting was of course proposed as a structure approach to
nonconvex problems. We refer to some relevant results of the analysis of convex convex-composite
functions developed in [4], see also [2]-Theorem 1 for a more general result together with the conju-
gate duality proposed for other possible results similar to those developed in [1] for the classical infimal
post-composition.

4. Conclusion

To conclude, we first propose a linear convergence result for a proximal linear method for solv-
ing DC-composite minimization problems. This generalizes, in the special case of DC optimization, the
main Theorem in [14], namely Theorem 3 and improves the condition on the strong convexity modulus.
The result still holds true for inexact versions of the algorithm. Indeed, for the method to be practical, it
is important to handle approximate solutions of subproblems. We also provide an alternative formula-
tion of split convex composite minimization problems relying on a notion of infimal post-composition.
We expect that this new approach becomes a further step towards developing other algorithms for
solving split composite minimization problems. This will be the subject of further research.
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