

OPTIMIZATION ERUDITORUM
Volume 1 (2024), No. 1, 56–74
https://doi.org/10.69829/oper-024-0101-ta05 Tulipa Opera Scholarum

SCALED FORWARD-BACKWARD ALGORITHM AND THE MODIFIED SUPERIORIZED
VERSION FOR SOLVING THE SPLIT MONOTONE VARIATIONAL INCLUSION PROBLEM

MINGXIA ZHENG1 AND YANNI GUO1,∗

1College of Science, Civil Aviation University of China, Tianjin 300300, China

Abstract. In this paper, we propose an inexact scaled forward-backward algorithm to solve the split
monotone variational inclusion problem in a real Hilbert space and prove the strong convergence of it
under appropriate conditions. Based on this, we discuss the bounded perturbation resilience of the exact
algorithm for introducing the corresponding superiorized version and the superiorization algorithm with
restarted perturbations. The numerical experiments illustrate that the proposed algorithms perform well
and the superiorization version with restarted perturbations has advantage in decreasing the number of
the iterations.

Keywords. Forward-backward algorithm; Split monotone variational inclusion problem; Bounded per-
turbation resilience; Superiorization.
© Optimization Eruditorum

1. Introduction

LetH1 andH2 be real Hilbert spaces. LetB1 : H1 → 2H1 ,B2 : H1 → 2H2 be multi-valued maximal
monotone operators. Let C1 : H1 → H1, C2 : H2 → H2 be ν1-inverse strongly monotone and ν2-
inverse strongly monotone operators, respectively. Let A : H1 → H2 be a bounded linear operator
from H1 to H2. We consider the following split monotone variational inclusion problem (SMVIP) in
this paper: find x∗ ∈ H1 such that

0 ∈ (B1 + C1)x
∗ and y∗ = Ax∗ ∈ H2 such that 0 ∈ (B2 + C2)y

∗. (1.1)

If C1 = C2 = 0, (1.1) reduces to the following split variational inclusion problem: find x∗ ∈ H1 such
that

0 ∈ B1x
∗ and y∗ = Ax∗ ∈ H2 such that 0 ∈ B2y

∗. (1.2)
Further, if we have B1 = NC and B2 = NQ, (1.2) simplifies to split feasibility problem, which was
originally formulated by Censor and Elfving [1] in 1994 in the following form:

find x∗ ∈ C such that y∗ = Ax∗ ∈ Q,

where NC and NQ are the normal cones of the nonempty closed and convex sets C ⊆ H1 and Q ⊆
H2, respectively. In fact, SMVIP provides a unified framework for issues like split feasibility problem,
split minimization problem, split variational inequality problem, split variational inclusion problem
and monotone inclusion problem and has found wide applications in real-world such as compressed
sensing and image recovery([2]), intensity-modulated radiation therapy treatment planning([3]), signal
processing and image reconstruction([4]), among others.

Moudafi [5] introduced SMVIP in 2011 and proposed the following iterative algorithm:

xn+1 = U(xn + γA∗(T − I)Axn), x0 ∈ H1, (1.3)
∗Corresponding author.
E-mail addresses: ynguo@amss.ac.cn (Y. N. Guo), and 2021061032@cauc.edu.cn (M. X. Zheng)
2020 Mathematics Subject Classification: 47H05;47H10;49J45.
Accepted: May 18, 2024.

56

https://tulipa-os.com/oper/024-0101.php
https://doi.org/10.69829/oper-024-0101-ta05
https://tulipa-os.com/

FORWARD-BACKWARD ALGORITHM AND THE MODIFIED SUPERIORIZED VERSION 57

where U = JB1
λ (I − λC1), T = JB2

λ (I − λC2), JB1
λ and JB2

λ are the resolvents of B1 and B2,
respectively, λ ∈ (0, 2min{v1, v2}), γ ∈ (0, 1

∥A∗A∥), A
∗ : H2 → H1 is the adjoint operator of A.

The weak convergence of this algorithm was addressed. In 2020, Zhao et al.[6] proposed a proximity
algorithm for solving (1.1) and obtained the strong convergence by introducing a contraction and a
strongly positive bounded linear operator. The iterative scheme is{

yn = xn + τA∗(T − I)Axn, x0 ∈ H1,

xn+1 = U(γαnf(xn) + (I − αnF)yn), n ≥ 0,

where U = JB2
λ1

(I − λ1C1), T = JB2
λ2

(I − λ2C2), λ1 ∈ (0, 2v1) and λ2 ∈ (0, 2v2). f : H1 → H1 is a
µ-contraction, µ ∈ [0, 1). F : H1 → H1 is a strongly positive bounded linear operator with coefficient
µ1.

On the other hand, to accelerate the convergence speed of algorithm (1.3), Yao et al. [8] incorporated
well-established inertial extrapolation techniques and resulted in the following algorithm with inertial
extrapolations and self-adaptive step sizes{

wn = xn + θn(xn − xn−1), x0, x1 ∈ H1,

xn+1 = U(wn + γnA
∗(T − I)Awn), n ≥ 1.

(1.4)

They proved that the sequence generated by algorithm (1.4) converges weakly to a solution of (1.1)
under some mild assumptions. Very recently, Zhou et al. [7] introduced adaptive hybrid steepest de-
scent algorithm involving an inertial term and proved that the generated sequence converges strongly
to a point of the solution set of problem (1.1). Moreover, Izuchukwu et al. [9] proposed an algorithm
to address problem (1.1) without the need to assume that C1 and C2 are inverse strongly monotone
operators. The algorithm is as follows:

wn = xn + θn(xn − xn−1), x0, x1 ∈ H1,

yn = JB2
λ2

(I − λ2C2)Awn,

vn = Awn − yn − λ2(C2Awn − C2yn),

t̂n = Awn − α̂ηnvn,

bn = wn + γnA
∗(t̂n −Awn),

un = JB1
λ1

(I − λ1C1)bn,

rn = bn − un − λ1(C1bn − C1un),

xn+1 = (1− ρn)wn + ρn(bn − αβnrn), n ≥ 1,

(1.5)

where

ηn =

{ ⟨Awn−yn,vn⟩
∥vn∥2 , vn ̸= 0,

0, vn = 0,
and βn =

{ ⟨bn−un,rn⟩
∥rn∥2 , rn ̸= 0,

0, rn = 0.

Under certain conditions on the parameters, they proved that the sequence generated by the algorithm
possesses weak convergence. More articles on solving (1.1) can be found in references [10]-[13]. An-
other way of accelerating strategies is scaling techniques for determining the descent direction, which
enables algorithms to better adapt to variations in data at different scales when dealing with problems
such as image restoration and machine learning [14]-[16].

Besides that, Censor [17] proposed a superiorization method for solving constrained optimization
problems with large data, which can improve the convergence speed of an algorithm to some extent.
Superiorization method is a heuristic method, which introduces a perturbation in each of its iterations
and aims to obtain lower values of the objective function. At the same time, the sequence generated
by this superiorization version converges to a feasible solution of the optimization problem by means

58 M. X. ZHENG AND Y. N. GUO

of that the basic algorithm (that is the algorithm without perturbations) possesses the bounded per-
turbation resilience (see Definition 3.4 in Section 3.2 below). In addition, superiorization method can
get more information than the basic algorithm by defining a cost (or target) function. Up to now, supe-
riorization method has found wild applications in real world, such as computer tomography scanning
[18]-[20], radiotherapy inverse treatment planning [21]-[22], medical image restoration ([23]), convex
feasibility problems [24]-[25], etc.

The perturbations introduced in the superiorization method usually have the form βnvn, n =
1, 2, · · · , where {vn} is a bounded sequence and {βn} is a summable sequence of positive numbers.
That the superiorization algorithm performs well in practice when βn is set to acn where a > 0,
c ∈ (0, 1) are constants. But the perturbations will become negligible due to that βn = acn will quickly
decrease to zero as the number of iteration steps increases. This situation is undesirable because it may
affect the accelaraion of the algorithm. The permission to restart the perturbation and to maintain the
summability of {βn} in the superiorized algorithm will increase the computational efficiency [22].

Inspired by the above results, we propose an inexact scaled forward-backward algorithm with inertial
term for solving problem (1.1) and analyze the strong convergence of the generated sequence. Then we
discuss the bounded perturbation resilience of the exact version of it. As a consequence, we show
the superiorization version of the exact algorithm and the superiorization algorithm with restarted
perturbations.

The rest of this paper is organized as follows. In Section 2, we review some background on monotone
operators and convex analysis. In Section 3, we propose an inexact algorithm for solving problem (1.1)
and prove the strong convergence of the generated sequence. After discussing the bounded perturba-
tion resilience of the exact algorithm (3.23), we introduce the pseudocode of the superiorized version
of algorithm (3.23) and the superiorized version with restarted perturbations. Finally, in Section 4, we
illustrate the validity of the proposed algorithms and the performance of them under different values
of the parameters by two numerical examples.

2. Preliminaries

In this section, we recall some notations, definitions and lemmas used in this paper. Let H be a real
Hilbert space with the inner product ⟨·, ·⟩ and the induced norm ∥·∥. Let {xn} ⊂ H be a sequence. That
{xn} converges strongly to x∗ is denoted by → and {xn} converges weakly to x∗ is denoted by⇀. The
set of all weak cluster points of {xn} is denoted by ωw(xn) = {x ∈ H|xnk

⇀ x and {xnk
} ⊂ {xn}} .

Let T : H → H be a nonlinear operator and Fix(T) be the fixed set of T . That is Fix(T) := {x ∈ H :
Tx = x}. Denote by I the identity operator on H .

Definition 2.1. ([26])
(i) T : H → H is said to be non-expansive if ∀x, y ∈ H , it has

∥Tx− Ty∥ ≤ ∥x− y∥.

(ii) T : H → H is said to be L-Lipschitz continuous with L ≥ 0 if ∀x, y ∈ H , it has

∥Tx− Ty∥ ≤ L∥x− y∥.

T is said to be contractive if 0 ≤ L < 1.
(iii) T : H → H is said to be firmly non-expansive if ∀x, y ∈ H , it has

⟨Tx− Ty⟩ ≥ ∥Tx− Ty∥2.

In particular, a firmly non-expansive operator is 1
2 -averaged.

(iv) T : H → H is said to be v-inverse strongly monotone (v-ism) with v > 0, if ∀x, y ∈ H , it has

⟨x− y, Tx− Ty⟩ ≥ v∥Tx− Ty∥2.

FORWARD-BACKWARD ALGORITHM AND THE MODIFIED SUPERIORIZED VERSION 59

Definition 2.2. ([5]) Let A : H → 2H be a multi-valued operator.
(i) A is said to be monotone, if ∀x, y ∈ H , u ∈ Ax, v ∈ Ay, it has

⟨u− v, x− y⟩ ≥ 0.

(ii) A is said to be maximal monotone, if it is monotone and the graph

Graph(A) = {(x, y) ∈ H ×H : y ∈ Ax}

is not properly contained in the graph of any other monotone operator. Furthermore, A is maximal
monotone if and only if for every (u, v) ∈ H ×H ,

(u, v) ∈ Graph(A) ⇔ (∀(x, y) ∈ Graph(A)) ⟨x− u, y − v⟩ ≥ 0.

(iii) the resolvent of A is defined as

JA
λ = (I + λA)−1, λ > 0.

Lemma 2.3. ([5]) Let H1 and H2 be real Hilbert spaces. Let Bi : Hi → 2Hi be maximal monotone
operator, Ci : Hi → Hi be vi-inverse strongly monotone operator for each i ∈ {1, 2}. Let A : H1 → H2

be a bounded linear operator. Denote the solution set of problem (1.1) by Ω. Then it is easy to check that
∀λ > 0,

x∗ ∈ Ω ⇔ x∗ ∈ Fix(JB1
λ (I − λC1)) and Ax∗ ∈ Fix(JB2

λ (I − λC2)).

Furthermore, if λ ∈ (0, 2min{v1, v2}), JB1
λ (I − λC1), JB2

λ (I − λC2) are averaged operators and hence

they are non-expansive. If γ ∈
(
0, 1

∥AA∗∥

)
, then the operator V := I + γA∗(JB2

λ (I − λC2) − I)A is
averaged, and hence it is also non-expansive, where A∗ is the adjoint operator of A.

Lemma 2.4. ([27]) Let H be a Hilbert space. Let T : H → H be a non-expansive operator. Then for all
x, y ∈ H , we have

⟨(x− Tx)− (y − Ty), T y − Tx⟩ ≤ 1
2∥(Tx− x)− (Ty − y)∥2,

and consequently if y ∈ F (T) then

⟨x− Tx, Ty − Tx⟩ ≤ 1
2∥Tx− x∥2.

Lemma 2.5. ([28]) Let x, y ∈ H and α ∈ R. Then
(i) |⟨x, y⟩| ≤ ∥x∥∥y∥,
(ii) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩,
(iii) ∥αx+ (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2,
(iv) 2⟨x, y⟩ = ∥x+ y∥2 − ∥x∥2 − ∥y∥2 = ∥x∥2 + ∥y∥2 − ∥x− y∥2.

Lemma 2.6. ([29]) LetH be a real Hilbert space,C ⊂ H be a nonempty closed convex set. Let T : C → C
is a non-expansive operator with Fix(T) ̸= ∅. The operator I −T is said to be demiclosed at zero if for any
sequence {xn} ⊂ C , that xn ⇀∈ C and ∥xn − Tx∥ → 0 implies x ∈ Fix(T).

Lemma 2.7. ([30]) Assume that {sn} is a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1−ϖn)sn +ϖnσn + δn, ∀n ≥ 1,

where {ϖn} ⊂ (0, 1), {σn}, {δn} ⊂ R satisfying
(i)

∑∞
n=1ϖn = +∞,

(ii) lim sup
n→∞

σn ≤ 0,

(iii)
∑∞

n=1 |δn| < +∞.
Then limn→∞ sn = 0.

60 M. X. ZHENG AND Y. N. GUO

3. Algorithms and the Convergence Analyses

In this section, we propose the scaled forward-backward algorithm and analyse the strong conver-
gence of the generated sequence in subsection 3.1. Then we verify the bounded perturbation resilience
of the exact version of the proposed algorithm in subsection 3.2. Finally, we give the corresponding
superiorization algorithm and the version with restarted perturbations in subsection 3.3.

3.1. The scaled forward-backward algorithm. In this subsection, we propose an inexact scaled
forward-backward algorithm with inertial terms and perturbations to solve problem (1.1). Then we
prove the strong convergence of it.

Given arbitrary x0, x1 ∈ H1. We define an iterative sequence {xn} by
yn = xn + θn(xn − xn−1) + en,

zn = yn + γnA
∗(JB2

ς (Ayn − ςD2(Ayn)C2Ayn)−Ayn),

xn+1 = αnf(yn) + (1− αn)J
B1
λ (zn − λD1(zn)C1zn), n ≥ 1,

(3.1)

where θn ≥ 0, γn > 0, ς, λ ∈ (0, 2min{v1, v2}), αn ∈ [0, 1]. f : H1 → H1 is a µ-contraction operator
with µ ∈ [0, 1). {en} is a perturbated sequence. Di : Hi → B(Hi, Hi), i = 1, 2 are scaled operators.

To obtain the strong convergence result of algorithm (3.1), we begin with some assumptions.
Assumption 3.1. Supposed that the operators and the solution set satisfy the following conditions, re-
spectively:

(i) B1 : H1 → 2H1 , B2 : H2 → 2H2 are maximal monotone operators,
(ii) C1 : H1 → H1 is a v1-inverse strongly monotone operator, and C2 : H2 → H2 is a v2-inverse

strongly monotone operator,
(iii) A : H1 → H2 is a bounded linear operator, and
(iv) the solution set Ω of problem (1.1) is nonempty, that is,

Ω = {p ∈ H1| 0 ∈ (B1 + C1)p and 0 ∈ (B2 + C2)Ap} ≠ ∅.
Assumption 3.2. Suppose the following conditions hold:

(i) θn ∈ [0, 1),
∑∞

n=1 θn∥xn − xn−1∥ < +∞,
(ii) {αn} ⊂ (0, 1), limn→∞ αn = 0,

∑∞
n=1 αn = +∞ and

∑∞
n=1 |αn − αn−1| < +∞,

(iii) 0 < infγn ≤ γn ≤ supγn <
1

∥AA∗∥ and
∑∞

n=1 |γn − γn−1| < +∞,
(iv)

∑∞
n=1 ∥en∥ < +∞, and

(v) For each x ∈ H1, y ∈ H2, the scaled operators D1(x), D2(y) are linear bounded opera-
tors and satisfy

∑∞
n=1 ∥ϱ1(zn)∥ :=

∑∞
n=1 ∥D1(zn)C1zn − C1zn∥ < +∞,

∑∞
n=1 ∥ϱ2(Ayn)∥ :=∑∞

n=1 ∥D2(Ayn)C2Ayn − C2Ayn∥ < +∞.

Theorem 3.3. Let Assumption 3.1 and Assumption 3.2 hold. Then the sequence {xn} generated by algo-
rithm (3.1) converges strongly to x∗ ∈ Ω, where x∗ = PΩf(x

∗).

Proof. We first prove that {xn} is a bounded sequence.

Denote by U := JB1
λ (I − λC1), T := JB2

ς (I − ςC2), and Ũzn := JB1
λ (I − λD1C1)zn := JB1

λ (zn −
λD1(zn)C1zn), T̃Ayn := JB2

ς (I − ςD2C2)Ayn := JB2
ς (Ayn − ςD2(Ayn)C2Ayn) for simplicity.

For any p ∈ Ω, we have Up = p and TAp = Ap by Lemma 2.3.
∥xn+1 − p∥ =∥αnf(yn) + (1− αn)un − p∥

=∥αn(f(yn)− f(p)) + αn(f(p)− p) + (1− αn)(un − p)∥
≤αn∥f(yn)− f(p)∥+ αn∥f(p)− p∥+ (1− αn)∥un − p∥
≤αnµ∥yn − p∥+ αn∥f(p)− p∥+ (1− αn)∥un − p∥.

(3.2)

FORWARD-BACKWARD ALGORITHM AND THE MODIFIED SUPERIORIZED VERSION 61

Further,

∥yn − p∥ = ∥xn − p+ θn(xn − xn−1) + en∥ ≤ ∥xn − p∥+ θn∥xn − xn−1∥+ ∥en∥, (3.3)

and it follows from the non-expansiveness of U (see Lemma 2.3), JB1
λ and Assumption 3.2 (v) that

∥un − p∥ =∥Ũzn − p∥

≤∥Ũzn − Uzn∥+ ∥Uzn − Up∥

=∥JB1
λ (I − λD1C1)zn − JB1

λ (I − λC1)zn∥+ ∥zn − p∥
≤∥(I − λD1C1)zn − (I − λC1)zn∥+ ∥zn − p∥
=∥zn − p∥+ λ∥ϱ1(zn)∥.

(3.4)

To estimate the value of ∥zn − p∥ in (3.4), we note from Lemma 2.4 that

2γn⟨yn − p,A∗(T − I)Ayn⟩ =2γn⟨A(yn − p) + (T − I)Ayn − (T − I)Ayn, (T − I)Ayn⟩
=2γn

(
⟨TAyn −Ap, (T − I)Ayn⟩ − ∥(T − I)Ayn∥2

)
≤2γn

(
1

2
∥(T − I)Ayn∥2 − ∥(T − I)Ayn∥2

)
=− γn∥(T − I)Ayn∥2,

which indicates

∥yn + γnA
∗(T − I)Ayn − p∥2

=∥yn − p∥2 + 2γn⟨yn − p,A∗(T − I)Ayn⟩+ γ2n∥A∗(T − I)Ayn∥2

≤∥yn − p∥2 + 2γn⟨yn − p,A∗(T − I)Ayn⟩+ γ2n∥AA∗∥∥(T − I)Ayn∥2

≤∥yn − p∥2 − γn∥(T − I)Ayn∥2 + γ2n∥AA∗∥∥(T − I)Ayn∥2

=∥yn − p∥2 − γn(1− γn∥AA∗∥)∥(T − I)Ayn∥2

≤∥yn − p∥2

as 0 < infγn ≤ γn ≤ supγn <
1

∥AA∗∥ . Hence,

∥zn − p∥ =∥yn + γnA
∗(T̃ − I)Ayn − p∥

=∥yn + γnA
∗(T̃ − I)Ayn − γnA

∗(T − I)Ayn + γnA
∗(T − I)Ayn − p∥

≤∥γnA∗(T̃ − I)Ayn − γnA
∗(T − I)Ayn∥+ ∥yn + γnA

∗(T − I)Ayn − p∥

≤γn∥A∗∥∥T̃Ayn − TAyn∥+ ∥yn + γnA
∗(T − I)Ayn − p∥

=γn∥A∗∥[∥JB2
ς (I − ςD2C2)Ayn − JB2

ς (I − ςC2)Ayn∥] + ∥yn + γnA
∗(T − I)Ayn − p∥

≤ςγn∥A∗∥∥ϱ2(Ayn)∥+ ∥yn + γnA
∗(T − I)Ayn − p∥ (3.5)

≤ςγn∥A∗∥∥ϱ2(Ayn)∥+ ∥yn − p∥. (3.6)

Substituting (3.6) into (3.4), we get

∥un − p∥ ≤∥zn − p∥+ λ∥ϱ1(zn)∥ (3.7)
≤∥yn − p∥+ ςγn∥A∗∥∥ϱ2(Ayn)∥+ λ∥ϱ1(zn)∥. (3.8)

62 M. X. ZHENG AND Y. N. GUO

Now, combining (3.2), (3.8) and (3.3) yields

∥xn+1 − p∥
≤αnµ∥yn − p∥+ αn∥f(p)− p∥+ (1− αn)∥un − p∥
≤αnµ∥yn − p∥+ αn∥f(p)− p∥+ (1− αn) (∥yn − p∥+ ςγn∥A∗∥∥ϱ2(Ayn)∥+ λ∥ϱ1(zn)∥)
≤(αnµ+ 1− αn)∥yn − p∥+ αn∥f(p)− p∥+ ςγn∥A∗∥∥ϱ2(Ayn)∥+ λ∥ϱ1(zn)∥

≤(1− αn(1− µ))∥xn − p∥+ αn(1− µ)
∥f(p)− p∥

1− µ

+ ςγn∥A∗∥∥ϱ2(Ayn)∥+ λ∥ϱ1(zn)∥+ θn∥xn − xn−1∥+ ∥en∥

≤(1− αn(1− µ))∥xn − p∥+ αn(1− µ)
∥f(p)− p∥

1− µ
+Mn,

where Mn = ςγn∥A∗∥∥ϱ2(Ayn)∥+ λ∥ϱ1(zn)∥+ θn∥xn − xn−1∥+ ∥en∥ such that
∑∞

n=1Mn < +∞.
By mathematical induction, we obtain

∥xn+1 − p∥ ≤max
{
∥x0 − p∥, ∥f(p)− p∥

1− µ

}
+

∞∑
n=1

Mn.

So {xn} is bounded. Consequently, {yn}, {un} are bounded due to (3.3), (3.8) and Assumption 3.2 (v).
Hence, {f(yn)} is also bounded.

Next, we prove that ωw(xn) ⊂ Ω. First of all, the boundedness of {xn} implies that ωw(xn) ̸= ∅.
For any q ∈ ωw(xn), then there exists a subsequence {xnk

} of {xn} such that xnk
⇀ q as k → ∞.

In the following, we prove that 0 ∈ (B1 + C1)q by utilizing the maximum monotonicity of the op-
erator B1 + C1 and that ynk

⇀ q as k → ∞, limn→∞ ∥(T − I)Aynk
∥ = 0, which indicates that

Aq = TAq. Then 0 ∈ (B2 + C2)Aq follows from Lemma 2.3. To show 0 ∈ (B1 + C1)q, we need to
verify unk

⇀ q as k → ∞ and limn→∞ ∥un − zn∥ = 0 at first.

From the definitions of {xn} and {yn}, we get

∥xn+1 − xn∥ =∥αnf(yn) + (1− αn)un − αn−1f(yn−1)− (1− αn−1)un−1∥
=∥αn(f(yn)− f(yn−1)) + (αn − αn−1)f(yn−1)

+ (1− αn)(un − un−1)− (αn − αn−1)un−1∥
≤αnµ∥yn − yn−1∥+ (1− αn)∥un − un−1∥+ |αn − αn−1|∥f(yn−1)− un−1∥,

(3.9)
and

∥yn − yn−1∥ =∥xn + θn(xn − xn−1) + en − xn−1 − θn−1(xn−1 − xn−2)− en−1∥
≤∥xn − xn−1∥+ θn∥xn − xn−1∥+ θn−1∥xn−1 − xn−2∥+ ∥en∥+ ∥en−1∥.

(3.10)

By Assumption 3.2 (v) and Lemma 2.3, we further get

∥un − un−1∥ =∥Ũzn − Ũzn−1∥

≤∥Ũzn − Uzn∥+ ∥Ũzn−1 − Uzn−1∥+ ∥Uzn − Uzn−1∥
≤λ∥ϱ1(zn)∥+ λ∥ϱ1(zn−1)∥+ ∥zn − zn−1∥,

(3.11)

FORWARD-BACKWARD ALGORITHM AND THE MODIFIED SUPERIORIZED VERSION 63

and

∥zn − zn−1∥ =∥yn + γnA
∗(T̃ − I)Ayn − (yn−1 + γn−1A

∗(T̃ − I)Ayn−1)∥

≤∥γnA∗(T̃ − I)Ayn − γnA
∗(T − I)Ayn∥

+ ∥γn−1A
∗(T̃ − I)Ayn−1 − γn−1A

∗(T − I)Ayn−1∥
+ ∥yn + γnA

∗(T − I)Ayn − (yn−1 + γn−1A
∗(T − I)Ayn−1)∥

≤γn∥A∗∥∥T̃Ayn − TAyn∥+ γn−1∥A∗∥∥T̃Ayn−1 − TAyn−1∥
+ ∥(I + γnA

∗(T − I)A)(yn − yn−1) + (I + γnA
∗(T − I)A)yn−1

− (I + γn−1A
∗(T − I)A)yn−1∥

≤ςγn∥A∗∥∥ϱ2(Ayn)∥+ ςγn−1∥A∗∥∥ϱ2(Ayn−1)∥+ ∥yn − yn−1∥
+ |γn − γn−1|∥A∗(T − I)Ayn−1∥.

(3.12)

So, by (3.9)-(3.12), we have

∥xn+1 − xn∥
≤αnµ∥yn − yn−1∥+ (1− αn)∥un − un−1∥+ |αn − αn−1|∥f(yn−1)− un−1∥
≤αnµ∥yn − yn−1∥+ |αn − αn−1|∥f(yn−1)− un−1∥
+ (1− αn) (λ∥ϱ1(zn)∥+ λ∥ϱ1(zn−1)∥+ ∥zn − zn−1∥)

≤αnµ∥yn − yn−1∥+ |αn − αn−1|∥f(yn−1)− un−1∥+ (1− αn)[λ∥ϱ1(zn)∥+ λ∥ϱ1(zn−1)∥
+ ςγn∥A∗∥∥ϱ2(Ayn)∥+ ςγn−1∥A∗∥∥ϱ2(Ayn−1)∥+ ∥yn − yn−1∥+ |γn − γn−1|∥A∗(T − I)Ayn−1∥]

≤(1− αn(1− µ))∥xn − xn−1∥+Nn,

whereNn = θn∥xn−xn−1∥+θn−1∥xn−1−xn−2∥+∥en∥+∥en−1∥+ |αn−αn−1|∥f(yn−1)−un−1∥+
λ∥ϱ1(zn)∥ + λ∥ϱ1(zn−1)∥ + ςγn∥A∗∥∥ϱ2(Ayn)∥ + ςγn−1∥A∗∥∥ϱ2(Ayn−1)∥ + |γn − γn−1|∥A∗(T −
I)Ayn−1∥ satisfying

∑∞
n=1Nn < +∞.

Take ϖn = αn(1− µ), σn = 0, δn = Nn, n ≥ 1 in Lemma 2.7. We obtain

lim
n→∞

∥xn+1 − xn∥ = 0. (3.13)

As a result,
∥un − xn∥ ≤∥un − xn+1∥+ ∥xn+1 − xn∥

=∥un − αnf(yn)− (1− αn)un∥+ ∥xn+1 − xn∥
≤αn∥un − f(yn)∥+ ∥xn+1 − xn∥
→0 as n→ ∞.

Thus, we have
lim
n→∞

∥un − xn∥ = 0, (3.14)

which together with xnk
⇀ q indicate

unk
⇀ q as k → ∞.

On the other hand, we have

∥un − p∥2 ≤ (∥zn − p∥+ λ∥ϱ1(zn)∥)2

=∥zn − p∥2 + 2λ∥zn − p∥∥ϱ1(zn)∥+ (λ∥ϱ1(zn)∥)2,

64 M. X. ZHENG AND Y. N. GUO

and

∥zn − p∥2 ≤ (∥yn + γnA
∗(T − I)Ayn − p∥+ γnς∥A∗∥∥ϱ2(Ayn)∥)2

≤∥yn + γnA
∗(T − I)Ayn − p∥2 + (ςγn∥A∗∥∥ϱ2(Ayn)∥)2

+ 2ςγn∥A∗∥∥ϱ2(Ayn)∥∥yn − p∥
≤∥yn − p∥2 − γn(1− γn∥AA∗∥)∥(T − I)Ayn∥2 + (ςγn∥A∗∥∥ϱ2(Ayn)∥)2

+ 2ςγn∥A∗∥∥ϱ2(Ayn)∥∥yn − p∥

based on (3.4), (3.5), respectively. Hence, we get

∥un − p∥2 ≤∥yn − p∥2 − γn(1− γn∥AA∗∥)∥(T − I)Ayn∥2 + (ςγn∥A∗∥∥ϱ2(Ayn)∥)2

+ 2ςγn∥A∗∥∥ϱ2(Ayn)∥∥yn − p∥+ 2λ∥zn − p∥∥ϱ1(zn)∥+ (λ∥ϱ1(zn)∥)2.
(3.15)

Also, because

∥yn − p∥2 =∥xn + θn(xn − xn−1)− p+ en∥2

≤∥xn + θn(xn − xn−1)− p∥2 + 2⟨en, yn − p⟩
≤∥xn − p∥2 + θ2n∥xn − xn−1∥2 + 2θn⟨xn − p, xn − xn−1⟩+ 2⟨en, yn − p⟩
≤∥xn − p∥2 + θ2n∥xn − xn−1∥2 + θn(∥xn − p∥2 − ∥xn−1 − p∥2

+ ∥xn − xn−1∥2) + 2∥en∥∥yn − p∥
=∥xn − p∥2 + θn(∥xn − p∥2 − ∥xn−1 − p∥2)
+ (θn + θ2n)∥xn − xn−1∥2 + 2∥en∥∥yn − p∥

≤∥xn − p∥2 + θn(∥xn − p∥2 − ∥xn−1 − p∥2)
+ 2θn∥xn − xn−1∥2 + 2∥en∥∥yn − p∥,

(3.16)

we conclude that by applying Lemma 2.5 (ii), (3.15) and (3.16)

∥xn+1 − p∥2

=∥αnf(yn) + (1− αn)un − p∥2

=∥αn(f(yn)− f(p)) + αn(f(p)− p) + (1− αn)(un − p)∥2

≤αn∥f(yn)− f(p)∥2 + (1− αn)∥un − p∥2 + 2αn⟨f(p)− p, xn+1 − p⟩
≤αnµ∥yn − p∥2 + 2αn⟨f(p)− p, xn+1 − p⟩+ (1− αn)[∥yn − p∥2

− γn(1− γn∥AA∗∥)∥(T − I)Ayn∥2 + (ςγn∥A∗∥∥ϱ2(Ayn)∥)2

+ 2ςγn∥A∗∥∥ϱ2(Ayn)∥∥yn − p∥+ 2λ∥zn − p∥∥ϱ1(zn)∥+ (λ∥ϱ1(zn)∥)2]
≤(1− αn(1− µ))[∥xn − p∥2 + θn(∥xn − p∥2 − ∥xn−1 − p∥2) + 2θn∥xn − xn−1∥2

+ 2∥en∥∥yn − p∥] + 2αn⟨f(p)− p, xn+1 − p⟩
− (1− αn)γn(1− γn∥AA∗∥)∥(T − I)Ayn∥2 + (ςγn∥A∗∥∥ϱ2(Ayn)∥)2

+ 2ςγn∥A∗∥∥ϱ2(Ayn)∥∥yn − p∥+ 2λ∥zn − p∥∥ϱ1(zn)∥+ (λ∥ϱ1(zn)∥)2

≤(1− αn(1− µ))∥xn − p∥2 + θn(∥xn − p∥2 − ∥xn−1 − p∥2)
+ 2αn⟨f(p)− p, xn+1 − p⟩ − (1− αn)γn(1− γn∥AA∗∥)∥(T − I)Ayn∥2 +Kn,

(3.17)

whereKn = 2θn∥xn−xn−1∥2+2∥en∥∥yn−p∥+(ςγn∥A∗∥∥ϱ2(Ayn)∥)2+2ςγn∥A∗∥∥ϱ2(Ayn)∥∥yn−
p∥ + 2λ∥zn − p∥∥ϱ1(zn)∥ + (λ∥ϱ1(zn)∥)2 such that

∑∞
n=1Kn < +∞. Thus, the second term on the

FORWARD-BACKWARD ALGORITHM AND THE MODIFIED SUPERIORIZED VERSION 65

right of (3.17) can be estimated as follows

(1− αn)(γn − γ2n∥AA∗∥)∥(T − I)Ayn∥2

≤∥xn − p∥2 − ∥xn+1 − p∥2 + θn(∥xn − p∥2 − ∥xn−1 − p∥2) + 2αn∥f(p)− p∥∥xn+1 − p∥+Kn

=(∥xn − p∥ − ∥xn+1 − p∥)(∥xn − p∥+ ∥xn+1 − p∥)
+ θn(∥xn − p∥ − ∥xn−1 − p∥)(∥xn − p∥+ ∥xn−1 − p∥) + 2αn∥f(p)− p∥∥xn+1 − p∥+Kn

≤∥xn − xn+1∥(∥xn − p∥+ ∥xn+1 − p∥) + θn∥xn − xn−1∥(∥xn − p∥+ ∥xn−1 − p∥)
+ 2αn∥f(p)− p∥∥xn+1 − p∥+Kn

→0 as n→ ∞,

which implies
lim
n→∞

∥(T − I)Ayn∥ = 0 (3.18)

in view of Assumption 3.2 (iii). Therefore,

∥xn − zn∥ ≤∥xn − yn∥+ ∥yn − zn∥

≤∥xn − yn∥+ γn∥A∗∥∥(T̃ − I)Ayn∥

≤∥xn − yn∥+ γn∥A∗∥(∥(T̃ − I)Ayn − (T − I)Ayn∥+ ∥(T − I)Ayn∥)
≤∥xn − yn∥+ ςγn∥A∗∥∥ϱ2(Ayn)∥+ γn∥A∗∥∥(T − I)Ayn∥
→0 as n→ ∞

(3.19)

since
∥xn − yn∥ ≤θn∥xn − xn−1∥+ ∥en∥ → 0 as n→ ∞. (3.20)

Finally, by using (3.14) and (3.19), we get

∥un − zn∥ ≤ ∥un − xn∥+ ∥xn − zn∥ → 0 as n→ ∞.

It yields
lim
n→∞

∥un − zn∥ = 0. (3.21)

Now, we prove 0 ∈ (B1 + C1)q. Observe that unk
= JB1

λ (I − λD1C1)znk
. We get

(I − λD1C1)znk
∈ (I + λB1)unk

, or 1
λ(znk

− λD1C1znk
− unk

) ∈ B1unk
.

Siminarly, for any (v, z) ∈ Graph(B1 + C1), we have z − C1v ∈ B1v. Then by the monotonicity of
B1, it has 〈

v − unk
, z − C1v − 1

λ(znk
− λD1C1znk

− unk
)
〉
≥ 0.

Consequently,

⟨v − unk
, z⟩

≥
〈
v − unk

, C1v +
1
λ(znk

− λD1C1znk
− unk

)
〉

=
〈
v − unk

, C1v −D1C1znk
+ C1unk

− C1unk
+ 1

λ(znk
− unk

)
〉

=⟨v − unk
, C1v − C1unk

⟩+ ⟨v − unk
, C1unk

−D1C1znk
⟩+

〈
v − unk

, 1λ(znk
− unk

)
〉

≥v1∥C1v − C1unk
∥2 + ⟨v − unk

, C1unk
−D1C1znk

⟩+
〈
v − unk

, 1λ(znk
− unk

)
〉

≥⟨v − unk
, C1unk

−D1C1znk
⟩+

〈
v − unk

, 1λ(znk
− unk

)
〉
.

(3.22)

66 M. X. ZHENG AND Y. N. GUO

We claim that the two terms on the right side of (3.22) tend to zero as n goes to infinity. In fact, from
Assumption 3.2 (v), (3.21) and the fact that C1 is a 1

v1
-Lipschitz continuous operator, we derive

|⟨v − unk
, C1unk

−D1C1znk
⟩|

=|⟨v − unk
, C1unk

−D1C1znk
+ C1znk

− C1znk
⟩|

≤|⟨v − unk
, C1unk

− C1znk
⟩|+ |⟨v − unk

, C1znk
−D1C1znk

⟩|

≤ 1

v1
∥v − unk

∥∥unk
− znk

∥+ ∥v − unk
∥∥ϱ1(znk

)∥

→0 as k → ∞.

This means
lim
k→∞

⟨v − unk
, C1unk

−D1C1znk
⟩ = 0.

Moreover, that

lim
k→∞

1

λ
⟨v − unk

, znk
− unk

⟩ = 0

follows from

0 ≤ 1

λ
|⟨v − unk

, znk
− unk

⟩| ≤ 1

λ
∥v − unk

∥∥unk
− znk

∥ → 0 as k → ∞.

Taking the limit with respect to k on both sides of (3.22), we get

lim
k→∞

⟨v − unk
, z⟩ = ⟨v − q, z⟩ ≥ 0.

Thus we have 0 ∈ (B1 + C1)q as B1 + C1 is a maximal monotone operator.

Next, we prove 0 ∈ (B2+C2)Aq. By (3.20) and that xnk
⇀ q as k → ∞ , we get ynk

⇀ q as k → ∞,
which implies Aynk

⇀ Aq as k → ∞ since A is a bounded linear operator. We conclude that
Aq = TAq by (3.18) and Lemma 2.6. Moreover, 0 ∈ (B2 + C2)Aq follows from Lemma 2.3. Hence,
q ∈ Ω. So we obtain ωw(xn) ⊂ Ω.

Finally, we prove {xn} converges strongly to x∗ = PΩf(x
∗). From (3.17), we know that

∥xn+1 − x∗∥2

≤(1− αn(1− µ))∥xn − x∗∥2 + θn(∥xn − x∗∥2 − ∥xn−1 − x∗∥2)
+ 2αn⟨f(x∗)− x∗, xn+1 − x∗⟩ − (1− αn)γn(1− γn∥AA∗∥)∥(T − I)Ayn∥2 +Kn

≤(1− αn(1− µ))∥xn − x∗∥2 + θn∥xn − xn−1∥(∥xn − x∗∥+ ∥xn−1 − x∗∥)
+ 2αn⟨f(x∗)− x∗, xn+1 − x∗⟩+Kn

=(1−ϖn)∥xn − x∗∥2 +ϖnσn + δn.

Setϖn = αn(1−µ), σn = 2
1−µ⟨f(x

∗)−x∗, xn+1−x∗⟩ and δn = θn∥xn−xn−1∥(∥xn−x∗∥+∥xn−1−
x∗∥)+Kn in Lemma 2.7. Then it is clear that

∑∞
n=1ϖn = ∞ and

∑∞
n=1 δn <∞. We verify that {σn}

satisfies the condition (ii) of Lemma 2.7 now. Obviously, we have

|σn| ≤
2

1− µ
∥f(x∗)− x∗∥∥xn+1 − x∗∥ < +∞,

which implies that lim supn→∞ σn is a finite number. Therefore, there exists a subsequence {σnj} ⊂
{σn} such that lim supn→∞ σn = limj→∞ σnj . Without loss of generality, assume xnj ⇀ q̃ as j → ∞.

FORWARD-BACKWARD ALGORITHM AND THE MODIFIED SUPERIORIZED VERSION 67

Then q̃ ∈ Ω and xnj+1 ⇀ q̃ as j → ∞ according to (3.13). So,

lim sup
n→∞

σn =
2

1− µ
lim sup
n→∞

⟨f(x∗)− x∗, xn+1 − x∗⟩

=
2

1− µ
lim
j→∞

⟨f(x∗)− x∗, xnj+1 − x∗⟩

=
2

1− µ
⟨f(x∗)− x∗, q̃ − x∗⟩

≤ 0.

As a result of Lemma 2.7, we have
lim
n→∞

∥xn − x∗∥ = 0.

That is {xn} converges strongly to x∗ = PΩf(x
∗). □

3.2. Bounded perturbation algorithm and convergence results. In this subsection, we start with
the definition of bounded perturbation resilience of an algorithmic operator, then we introduce the
bounded perturbation algorithm of the exact version of algorithm (3.1). The strong convergence of it
follows from Theorem 3.3.

Definition 3.4. (Bounded perturbation resilience [20]). Given a problem ψ. An algorithmic operator
T : H → H is said to be bounded perturbation resilient if the following condition holds: if the sequence
{xn}, generated by xn+1 = Txn with x0 ∈ H , converges to a solution of ψ, then any sequence {yn},
generated by yn+1 = T (yn + βnvn) with y0 ∈ H , also converges to a solution of ψ, where {vn} is a
bounded sequence in H and the scalars βn(n = 0, 1, 2, · · ·) satisfy βn > 0 and

∑∞
n=0 βn <∞.

We consider the exact version of algorithm (3.1) as the algorithmic operator T . Let en ≡ 0, n ≥ 1 in
algorithm (3.1), we get the following exact version: given arbitrary x0, x1 ∈ H1, define

yn = xn + θn(xn − xn−1),

zn = yn + γnA
∗(JB2

ς (Ayn − ςD2(Ayn)C2Ayn)−Ayn),

xn+1 = αnf(yn) + (1− αn)J
B1
λ (zn − λD1(zn)C1zn), n ≥ 1.

(3.23)

Corollary 3.5. Let Assumption 3.1 and Assumption 3.2 hold. Then the sequence {xn} generated by algo-
rithm (3.23) converges strongly to x∗ ∈ Ω, where x∗ = PΩf(x

∗).

The bounded perturbation algorithm of algorithm (3.23) is : given arbitrary x0, x1 ∈ H1, iterate
wn = xn + βnvn,

y
′
n = wn + θn(wn − wn−1),

z
′
n = y

′
n + γnA

∗(JB2
ς (Ay

′
n − ςD2(Ay

′
n)C2Ay

′
n)−Ay

′
n),

xn+1 = αnf(y
′
n) + (1− αn)J

B1
λ (z

′
n − λD1(z

′
n)C1z

′
n), n ≥ 1.

(3.24)

Theorem 3.6. Suppose that Assumption 3.1 and Assumption 3.2 hold. Let {βn} and {vn} fulfill the
conditions stated in Definition 3.4. Then the sequence {xn} generated by (3.24) converges strongly to x∗ ∈
Ω. Hence, algorithm (3.23) is bounded perturbation resilient.

Proof. Plug wn = xn + βnvn into the second formula of (3.24). We get

y
′
n = xn + βnvn + θn(xn + βnvn − (xn−1 + βn−1vn−1))

= xn + θn(xn − xn−1) + βnvn + θn(βnvn − βn−1vn−1)

= xn + θn(xn − xn−1) + e
′
n,

68 M. X. ZHENG AND Y. N. GUO

where e′n = βnvn + θn(βnvn − βn−1vn−1) such that
∞∑
n=1

∥e′n∥ =
∞∑
n=1

∥βnvn + θn(βnvn − βn−1vn−1)∥

≤
∞∑
n=1

[∥βnvn∥+ θn∥βnvn∥+ θn∥βn−1vn−1∥]

≤
∞∑
n=1

βn[∥vn∥+ θn∥vn∥] +
∞∑
n=1

θnβn−1∥vn−1∥

<+∞.

So algorithm (3.24) can be rewritten as
y
′
n = wn + θn(wn − wn−1) + e

′
n,

z
′
n = y

′
n + γnA

∗(JB2
ς (Ay

′
n − ςD2(Ay

′
n)C2Ay

′
n)−Ay

′
n),

xn+1 = αnf(y
′
n) + (1− αn)J

B1
λ (z

′
n − λD1(z

′
n)C1z

′
n), n ≥ 1,

which is algorithm (3.1). So we get that the sequence {xn} generated by (3.24) converges strongly
to x∗ ∈ Ω according to Theorem 3.3. It also means that algorithm (3.23) is bounded perturbation
resilient. □

3.3. Superiorization algorithm and superiorization algorithm with restarted perturbations.
Superiorization algorithm works by using the bounded perturbation resilience of a basic algorithm and a
nonascending direction of the target function at each iteration point. Then this algorithm provides us an
automatic way for finding a solution of problem (1.1) and getting a reduced target function value. In this
subsection, we introduce the concept of nonascending direction at first. Then we give the superiorized
version (AlgS) of algorithm (3.23) and the superiorized version with restarted perturbations (AlgSR).

Let Φ : H → R be a target function. A vector v ∈ H is said to be a nonascending direction of the
function Φ at point x, if ∥v∥ ⩽ 1 and there exists a positive number ε such that for any δ ∈ [0, ε), it
has Φ(x+ δv) ⩽ Φ(x). Such nonascending direction always exists. For example, the zero vector v is a
nonascending direction of Φ at x.

The pseudocode of the superiorized version (AlgS) of the algorithm (3.23) is given in the next page.
Note that the summable sequence {βn} = {acn} employed in AlgS decreases to zero quite fast. This

will make the perturbations βnvn(n = 0, 1, 2, · · ·) insignificant. That restarting the perturbations to
a previous value while maintaining the summability of the perturbation sequence is a useful method
as it may be improve the performance of an algorithm. In the following pseudocode of superiorized
version of algorithm (3.23) with restarted perturbations (AlgSR), {Wr} is a positive integer sequence
used to control when the perturbations return to a previous value.

4. Numerical experiments

In this section, we present some numerical experiments to illustrate the performance of the proposed
algorithms. All numerical results are written in MATLAB R2023(b) on an Intel(R) Core(TM) i5-8265U
CPU, 1.80 GHz computer with a 8.00GB RAM. Denote the number of iterations by “Iter.”, the CPU time
by “Sec.” in seconds and the stopping criterion ∥xn+1 − xn∥ < ε by “ε”.

Example 4.1. Let H1 = H2 = R equipped with the inner product ⟨x, y⟩ = xy (∀ x, y ∈ R) and
the induced norm ∥x∥ = |x| (∀x ∈ R). Define B1 : H1 → 2H1 by B1x = 3x, B2 : H2 → 2H2 by
B2x = 2x, C1 : H1 → H1 by C1x = sinx and C2 : H2 → H2 by C2x = 3x (∀x ∈ R). Obviously, both
B1 andB2 are maximal monotone operators. C1 is a 1-inverse strongly monotone operator and C2 is a

FORWARD-BACKWARD ALGORITHM AND THE MODIFIED SUPERIORIZED VERSION 69

Superiorized version of algorithm (3.23)
1 Given x0, x1 ∈ H1,c ∈ (0, 1), a > 0, N ∈ N+, {αn} ⊂ (0, 1), θn ∈ [0, 1), γn ∈ (0, 1

∥AA∗∥);
2 set n = 1, l = −1;
3 repeat
4 set x0

n = xn, z = xn−1;
5 for k = 0 : N − 1;
6 set vkn to be a nonascending vector for Φ at xk

n;
7 set l = l + 1;
8 when Φ(xk

n + aclvkn) ≥ Φ(xk
n)

9 l = l + 1;
10 end
11 set xk+1

n = xk
n + aclvkn;

12 end
13 set xn = xN

n ;
14 compute yn = xn + θn(xn − z);
15 set z

′
n = y

′
n + γnA

∗(JB2
ς (Ay

′
n − ςD2(Ay

′
n)C2Ay

′
n)−Ay

′
n);

16 set xn+1 = αnf(y
′
n) + (1− αn)J

B1
λ (z

′
n − λD1(z

′
n)C1z

′
n);

17 set n = n+ 1.

Superiorized version of algorithm (3.23) with restarted perturbations
1 Given x0, x1, c ∈ (0, 1), a > 0, {αn} ⊂ (0, 1), θn ∈ [0, 1), γn ∈ (0, 1

∥AA∗∥), N ∈ N+, and a sequence of positive
intergers {Wr}∞r=0.
2 set n = 1, l = −1, w = 0, r = 0;
3 repeat
4 set x0

n = xn, z = xn−1;
5 for k = 0 : N − 1;
6 set vkn to be a nonascending vector for Φ at xk

n;
7 set l = l + 1;
8 While Φ(xk

n + aclvkn) ≥ Φ(xk
n)

9 set l = l + 1;
10 end
11 set xk+1

n = xk
n + aclvkn;

12 end
13 set w = w + 1;
14 If w = Wr ;
15 set r = r + 1, l = r, w = 0;
16 end
17 set xn = xN

n ;
18 compute yn = xn + θn(xn − z);
19 set xn+1 = αnf(yn) + (1− αn)Ũ(yn + γA∗(T̃ − I)Ayn);
20 set n = n+ 1.

3-inverse strongly monotone operator. Let Ax = x
5 (∀ x ∈ R). Then A : H1 → H2 is a bounded linear

operator on R and the adjoint A∗ of A is defined by A∗y = y
5 (∀y ∈ R).

In the numerical experiments, we chooseD1(x) = D2(Ax) = [1+ t
n2]I (t ∈ (−1, 1) is a constant),

θn = 1
n1.2+1

, γn = 1
25

√
n
+ 0.01, en = 0, λ ∈ (0, 2min{1, 3}) = (0, 2), αn = 1√

n+1
and f(x) = 3x

10

in algorithm (3.1) (Alg (3.1)), AlgS and AlgSR. Choose N = 10, c = 0.8, the target function Φ(x) =
1
2 |x|

2, ∀x ∈ R in AlgS, AlgSR and choose Wr = W = 30 in AlgSR. For algorithm (1.5) (Alg (1.5)), we
use the parameters provided in [9].

70 M. X. ZHENG AND Y. N. GUO

(a) Alg (1.5), Alg (3.1), AlgS and AlgSR (x0 = 37, x1 = 68)

(b) Alg (1.5), Alg (3.1), AlgS and AlgSR (x0 = −45, x1 = −82)

(c) Alg (1.5), Alg (3.1), AlgS and AlgSR (x0 = 105, x1 = −127)

(d) Alg (1.5), Alg (3.1), AlgS and AlgSR (x0 = −93, x1 = 118)

Figure 1. The number of iterations with the different initial values

FORWARD-BACKWARD ALGORITHM AND THE MODIFIED SUPERIORIZED VERSION 71

Figure 1 (a)-(d) illustrate the numerical results of Alg (1.5), Alg (3.1), AlgS and AlgSR with the differ-
ent initial values and the different stopping criterions. From the left figures of (a)-(d), we can see that
Alg (3.1), AlgS and AlgSR have much fewer iterations than Alg (1.5) under the same stopping criteri-
ons. We compare the numerical performance of the three algorithms Alg (3.1), AlgS and AlgSR in the
right figures of (a)-(d). It is reported that the three algorithms have the same iteration numbers when
the stopping criterion is 10−10. AlgSR or AlgS has better numerical performance than the other two
algorithms under some stopping criterions.

Example 4.2. Let H1 = H2 = l2(R), where l2(R) = {x = (x1, x2, · · · , xi, · · ·)|xi ∈ R,
∑∞

i=1 |xi|2 <
∞} with the norm ∥x∥ =

√∑∞
i=1 |xi|2 (∀x ∈ l2(R)). Let B1x = 2x, B2x = 5x (∀x ∈ l2(R)).

Clearly, B1 and B2 are maximal monotone operators from l2(R) to l2(R). Let C1x = (x1+|x1|
2 , x2+|x2|

2 ,
x3+|x3|

2 , · · ·), C2x = 3x (∀x ∈ l2(R)). It is easy to verify that C1 is 1-inverse strongly monotone
and C2 is 3-inverse strongly monotone. Define a bounded linear operaor A from H1 to H2 as Ax =
(0, x1,

x2
2 ,

x3
3 , · · ·) (∀x ∈ l2(R)). Then the adjoint operator A∗ of A is A∗y = (y2,

y3
2 ,

y4
3 , · · ·) (∀y ∈

l2(R)).
In the following numerical experiments, we select D1(x) = D2(Ax) = [1 − t

n2]I (t ∈ (−1, 1) is
a constant), θn = 1

n2 , γn = 0.001 + 1

∥AA∗∥n
1
2

, λ, ς ∈ (0, 2min{1, 3}) = (0, 2) and αn = 1
2n+1 in Alg

(3.1), AlgS and AlgSR. We define a target function Φ(x) = 1
2∥x∥

2 and the nonascending direction v of
the function Φ at point x as v = − x

∥x∥ if ∥x∥ ̸= 0 or v = 0, otherwise in AlgS and AlgSR. We use the
parameters given in [9] for Alg (1.5). Choose the initial values x0 = (12 ,

1
4 ,

1
8 , · · ·), x1 = (1, 2, 3, · · ·).

We first consider how the kernel c of the summable perturbations and the inner loop numberN affect
the iterations of AlgS and AlgSR. Then we report the numerical results of AlgSR with the different W .
Finally, we compare the numerical performance of Alg (1.5), Alg (3.1), AlgS and AlgSR.

(a) AlgS (b) AlgSR

Figure 2. Comparison of iteration steps of AlgS and AlgSR with different c and N

In Figure 2, we choose the contraction operator f = 0.7, the number of consecutive step-sizes of the
restart W = 50, the stopping criterion ε = 100, 10−2, · · · , 10−10 and set c = 0.2, 0.5, 0.9, N = 2, 20,
respectively. It can be seen that the iteration numbers of AlgS is greatly affected by the different values
of c, N and it has the least number of iterations when c = 0.2, N = 20. In contrast to this, the iteration
numbers of AlgSR is less affected by the values of c, N and it has the least number of iterations when
c = 0.5, N = 20.

In Figure 3, we choose the contraction operator f = 0.7, the stopping criterion ε = 100, 10−2, · · · ,
10−10. Set W = 2, 20, 35, 50, respectively. We compare the number of iterations of AlgSR with the
different values of W in two cases: c = 0.5, N = 20 and c = 0.9, N = 2. It can be seen that AlgSR has
better convergence performance with W = 50 in the both cases.

72 M. X. ZHENG AND Y. N. GUO

(a) AlgSR (c = 0.5, N = 20) (b) AlgSR (c = 0.9, N = 2)

Figure 3. Comparison of iteration numbers of AlgSR under different c, N and W

Table 1. Numerical results for different contraction operator f(x)

f(x)
Alg (1.5) Alg (3.1) AlgS AlgSR

Iter. Sec. Iter. Sec. Iter. Sec. Φ. Iter. Sec. Φ.
0.1x 6113 0.3186 39 0.0129 35 0.0332 0 29 0.0257 0
0.5x 6113 0.3129 41 0.0120 36 0.0333 0 34 0.0261 0
0.9x 6113 0.3232 43 0.0133 36 0.0299 0 36 0.0277 0

In Table 1, we choose c = 0.9, N = 2, W = 50, the stopping criterion ε = 10−12 and compare the
numerical performance of Alg (1.5), Alg (3.1), AlgS and AlgSR when f = 0.1, 0.5, 0.9, respectively. The
experiments show that the proposed algorithms Alg (3.1), AlgS and AlgSR have obviously advantage
than Alg (1.5) in decreasing the number of iterations and the running time whatever the value f takes.
Especially, the superiorized algorithm with restarted perturbation has the minimum number of iteration
while running relatively little compute time.

5. Conclusion

In this paper, we proposed an inexact scaled forward-backward algorithm for solving the split mono-
tone variational inclusion problem and proved the strong convergence of the generated sequence under
some appropriate conditions. We also discussed the bounded perturbation resilience of the exact ver-
sion of it and introduced the superiorization algorithm as well as the superiorization algorithm with
restarted perturbations. In numerical experiments, we illustrated the effectiveness of the proposed al-
gorithms and showed the effect of the kernel c, inner loop number N and the number of restarted
steps W on the number of iterations. The numerical results show that choosing of appropriate W may
effectively reduce the number of iterations.

Statements and Declarations

The authors declare that they have no conflict of interest, and the manuscript has no associated data.

Acknowledgments

The authors would like to acknowledge the reviewers for the very valuable comments which helped
to improve the presentation of this paper.

FORWARD-BACKWARD ALGORITHM AND THE MODIFIED SUPERIORIZED VERSION 73

References
[1] Y. Censor and T. Elfving. A multiprojection algorithm using Bregman projections in a product space. Numerical Algo-

rithms, 8: 221-239, 1994.
[2] N. Pakkaranang, P. Kumam, Y. I. Suleiman, and B. Ali. Bounded perturbation resilience of viscosity proximal algorithm

for solving split variational inclusion problems with applications to compressed sensing and image recovery. Mathemat-
ical Methods in the Applied Sciences, 45(8): 4085-4107, 2022.

[3] Y. Censor, T. Bortfeld, B. Martin, and A. Trofimov. A unified approach for inversion problems in intensity-modulated
radiation therapy. Physics in Medicine and Biology, 51(10): 2353-2365, 2006.

[4] C. Byrne. A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Prob-
lems, 20(1): 103-120, 2004.

[5] A. Moudafi. Split monotone variational inclusions. Journal Of Optimization Theory and Applications, 150(3): 275-283,
2011.

[6] X. Zhao, J.-C. Yao, and Y. Yao. A proximal algorithm for solving split monotone variational inclusions. University Po-
litehnica of Bucharest Scientific Bulletin - Series A - Applied Mathematics and Physics, 82(3): 43-52, 2020.

[7] Z. Zhou, B. Tan, and S. Li. Adaptive hybrid steepest descent algorithms involving an inertial extrapolation term for split
monotone variational inclusion problems. Mathematical Methods in the Applied Sciences, 45(15): 8835-8853, 2022.

[8] Y. Yao, Y. Shehu, X. H. Li, and Q. L. Dong. A method with inertial extrapolation step for split monotone inclusion
problems. Optimization, 70(4): 741-761, 2021.

[9] C. Izuchukwu, S. Reich, and Y. Shehu. Relaxed inertial methods for solving the split monotone variational inclusion
problem beyond co-coerciveness. Optimization, 72(2): 607-646, 2023.

[10] Y. Shehu and F. U. Ogbuisi. An iterative method for solving split monotone variational inclusion and fixed point problems.
Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-matematicas, 110(2): 503-518, 2016.

[11] K. R. Kazmi, R. Ali, and M. Furkan. Hybrid iterative method for split monotone variational inclusion problem and hi-
erarchical fixed point problem for a finite family of non-expansive mappings. Numerical Algorithms, 79(2): 499-527,
2018.

[12] J. L. Guan, L. C. Ceng, and B. Hu. Strong convergence theorem for split monotone variational inclusion with constraints
of variational inequalities and fixed point problems. Journal of Inequalities and Applications, 2018: 1-29, 2018.

[13] Z. Wang, X. Long, Z. Lei, and Z. Chen. New self-adaptive methods with double inertial steps for solving splitting mono-
tone variational inclusion problems with applications. Communications in Nonlinear Science and Numerical Simulation,
114, 2022.

[14] S. Bonettini, R. Zanella, and L. Zanni. A scaled gradient projection method for constrained image deblurring. Inverse
Problems, 25(1): 015002, 2009.

[15] S. Bonettini and M. Prato. New convergence results for the scaled gradient projection method. Inverse Problems, 31(9):
095008, 2015.

[16] D. Li, M. Lamoureux, and W. Liao. Incorporating multiple a priori information for inverse problem by inexact scaled
gradient projection. Journal of Computational and Applied Mathematics, 437: 115460, 2024,

[17] Y. Censor, R. Davidi, and T. G. Herman. Perturbation resilience and superiorization of iterative algorithms. Inverse Prob-
lems, 26(6): 065008, 2010.

[18] M. Guenter, S. Collins, A. Ogilvy, W. Hare, and A. Jirasek. Superiorization versus regularization: A comparison of al-
gorithms for solving image reconstruction problems with applications in computed tomography. Medical Physics, 49(2):
1065-1082, 2022.

[19] T. Nikazad, M. Abbasi, L. Afzalipour, and T. Elfving. A new step size rule for the superiorization method and its applica-
tion in computerized tomography. Numerical Algorithms, 90(3): 1253-1277, 2022.

[20] Y. Censor, R. Davidi, G. T. Herman, R.W. Schulte, and L. Tutreashvili. Projected subgradient minimization versus supe-
riorization. Journal of Optimization Theory and Applications, 160(3): 730-747, 2014.

[21] R. Davidi, Y. Censor, R. W. Schulte, S. Geneser, and L. Xing. Feasibility-seeking and superiorization algorithms applied
to inverse treatment planning in radiation therapy. Communications In Contemporary Mathematics, 636: 83-92, 2015.

[22] F. J. Aragón-Artacho, Y. Censor, A. Gibali, and D. T.-B. The superiorization method with restarted perturbations for split
minimization problems with an application to radiotherapy treatment planning. Applied Mathematics and Computation,
440: 127627, 2023.

[23] T. Nikazad, R. Davidi, and G. T. Herman. Accelerated perturbation-resilient block-iterative projection methods with
application to image reconstruction. Inverse Problems, 28(3): 035005, 2012.

[24] Y. Censor. Can linear superiorization be useful for linear optimization problems? Inverse Problems, 33(4): 044006, 2017.
[25] M. Ertürk and A. Salkım. Superiorization and bounded perturbation resilience of a gradient projection algorithm solving

the convex minimization problem. Optimization Letters, 17(8): 1957-1978, 2023.

74 M. X. ZHENG AND Y. N. GUO

[26] H. K. Xu. Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Problems,
26(10): 105018, 2010.

[27] G. Crombez. A hierarchical presentation of operators with fixed points on Hilbert spaces. Numerical Functional Analysis
and Optimization, 27(3-4): 259-277, 2006.

[28] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in
Mathematics, 2011.

[29] K. Goebel and S. Reich. Uniform convexity, hyperbolic geometry, and non-expansive mappings. Marcel Dekker Inc., New
York, 1984.

[30] H. K. X. Iterative algorithms for nonlinear operators. Journal Of The London Mathematical Society, 66(1): 240-256, 2002.

	1. Introduction
	2. Preliminaries
	3. Algorithms and the Convergence Analyses
	3.1. The scaled forward-backward algorithm
	3.2. Bounded perturbation algorithm and convergence results
	3.3. Superiorization algorithm and superiorization algorithm with restarted perturbations

	4. Numerical experiments
	5. Conclusion
	Statements and Declarations
	Acknowledgments
	References

